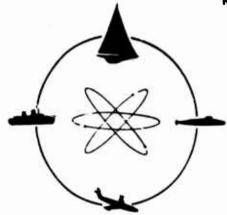
AD-756 497

EFFECTS OF TERRAIN POWER SPECTRAL DENSITY SHAPING AND MEASUREMENT INTERVAL ON A VEHICLE RIDE SIMULATION

Robert E. Keenan, Jr.

Stevens Institute of Technology

Prepared for:


Department of Defense

February 1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

DAVIDSON LABORATORY

Report SIT-DL-73-1646

February 1973

EFFECTS OF TERRAIN POWER SPECTRAL DENSITY SHAPING AND MEASUREMENT INTERVAL ON A VEHICLE RIDE SIMULATION

by

Robert E. Keenen, Jr.

prepared for .
Department of Defense under Contract DAAE-07-69-0356 (Project THEMIS)

This document has been approved for public release and sale; its distribution is unlimited.

Reproduction of the document in whole or in part is permitted for any purpose of the United States Government.

STEVENS INSTITUTE OF TECHNOLOGY

CASILE POINT STATION HOBOKEN, NEW JERSEY 07030

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Springfield VA 22151

UNCLASSIFIED

Security Classification			6 T 4 T 4 T 4 T 4 T 4 T 4 T 4 T 4 T 4 T			
Of an army of the machine of title, hady of all	CUMENT CONTROL DATA - R		the averall transi in classified)			
Davidson Laboratory, Stevens		te. REPORT	UNCLASSIFIED			
Hoboken, New Jersey 07030						
EFFECTS OF TERRAIN POWER SPECAND MEASUREMENT INTERVAL ON A		N				
4. DESCRIPTIVE NOTES (Type of report and inches	ive delee)					
Robert E. Keenan, Jr.		· · · · · · · · · · · · · · · · · · ·				
February 1973	70, TOTAL NO. 0	126	76. NO. OF REFS			
DAAE-07-69-0356 b. Project no.	SA, ORIGINATOR'S	REPORT N	UMBER(S)			
e. d.	ob. OTHER REPORMED PROPERTY	RT NOIDI (An	y other numbers that may be easigned			
distribution is unlimited.	ment has been approved for		Reproductio			
of the document in whole or in	n part is permitted for a	MLITARY AC	ose of the U.S. Govt.			
			nt of Defense on, D. C. 20301			
· inferr						

A two-dimensional, five-degree-of-freedom, digital computerized, wheeled-vehicle-ride simulation is tested for sensitivity to two parameters: the power spectral density slope of computer-generated, random terrain profiles and the spacing of the discrete profile points. The vehicle ride simulation is exercised over six terrain profiles of different PSD slopes but identical RMS elevations. The simulation is also exercised several times over one basic profile described by samples taken at different measurement intervals. Calculated absorbed power at the vehicle center of gravity is used to compare ride roughness over the different profiles. The vehicle simulation is shown to be extremely sensitive to changes in PSD slope. The sensitivity to changes in measurement interval

is shown to be dependent on vehicle size and mass.

UNCLASSIFIED

the state of an in the meter of the state of	LIN	K A	LINI		LIN	
the first first of the first of the first was an expension of the contract of the first of the f	ROLE	WY	HOLE	WT	HOLE	~ •
the or trend haby	15 15 4	367 6		1	100	1
POWER SPECTRAL DENSITY		1			1/00/15	
RANDON TERRAIN PROFILE	A				1111	71.75
VEHICLE RIDE SIMULATION TO THE BUTTON			STEEL STEEL	1131110	9 2 1 3 2 5 9 2 1 1 1 1	
SENSITIVITY ANALYSIS						
MEASUREMENT INTERVAL	tab min	100 June 19	9 13	15.00	00 /	
the fact of the second of the		- 7		110	110	100
			(1V. ±6)	T(VIII)	1 24	W
CARL WAY DATE OF THE STREET	-		= 13		Water-	6.724
physical days for the control of the				1171	175474	50
AND MARKET THE PARTY OF THE PARTY OF			-		F 3 143	
			1	C. P. III		40
photograph of your less and the control of the cont						
and the state of t						
if tales brewseares of the district becomes residues.	400	el la	1 7			(50)
ON CONTRACTOR OF THE PARTY OF T				194	110	
and the property of security and the first here are				-	-	-
A STATE OF THE STA			- 3			MET.
1000 A 1000				-		
of Thomselve and the state of t						
Talanta ha						
The second state of the second						
of or or solling the second					100	-
turisment et maitales, sain des estates en la company et l						
the later of the second of the	100		The second	one of		
12000 bedroads been - 12 Horris Ender-		- 1			PIVE I	
SECTION DESCRIPTION OF THE PROPERTY OF THE PRO	L., 1		VALL PO	4		741
iaviete i devoluzioni i especiale in in especiale					2.5	
	žili v	C. 19	0.00419	Half 200	5 5/19	
	H					
	j					
Carried Law Control Co	FOIC S	Section 4	S	Table 100		

Infin

UNCLASSIFIED

DAVIDSON LABORATORY Stevens institute of Technology Castle Point Station Hoboken, New Jersey 07030

Report \$1T-DL-73-1646

February 1973

EFFECTS OF TERRAIN POWER SPECTRAL DENSITY SHAPING AND MEASUREMENT INTERVAL ON A VEHICLE RIDE SIMULATION

by

Robert E. Keenan, Jr.

Prepared for Department of Defense under Contract DAAE-07-69-0356 (DL Project (3683/423)

This document has been approved for public release and sale; its distribution is unlimited.

production of the document in whole or in part is permitted for any purpose of

the United States Government.

proved

1. Robert Ehrlich, Manager Transportation Research Group

T-C

ABSTRACT

Effects of Terrain Power Spectral Density Shaping and Measurement Interval on a Vehicle Ride Simulation

by

Robert E. Keenan, Jr.

Advisor

I. Robert Ehrlich

May 1972

A two-dimensional, five-degree-of-freedom, digital computerized, wheeled-vehicle-ride simulation is tested for sensitivity to two parameters: the power spectral density slope of computer-generated, random terrain profiles and the spacing of the discrete profile points. The vehicle ride simulation is exercised over six terrain profiles of different PSD slopes but identical RMS elevations. The simulation is also exercised several times over one basic profile described by samples taken at different measurement intervals. Calculated absorbed power at the vehicle center of gravity is used to compare ride roughness over the different profiles. The vehicle simulation is shown to be extremely sensitive to changes in PSD slope. The sensitivity to changes in measurement interval is shown to be dependent on vehicle size and mass.

KEY WORDS

Power Spectral Density
Random Terrain Profile
Vehicle Ride Simulation
Sensitivity Analysis
Measurement Interval

H

B

0

I

0

0

1

1

0

0

TABLE OF CONTENTS

ABSTRACT .				•	•			•			•		•	•	•		•	•	•	•	•	•	•	•			•	1
KEY WORDS												•	•									•			•			11
LIST OF SYN	4BOL	S						•	•	•						٠		•		•	•					•	•	٧
LIST OF FIG	URE	S	•							•						•	•	•								•		vi
LIST OF TAE	LES								•						•		•	•										1
INTRODUCTIO	M .	•		•											•		•	•				•			٠			1
BACKGROUND															•				•	•	•							1
DISCUSS ION	AND	C	MF	יטי	ΓĒ	R C	AL	C	UU	\T	01	NS																8
	HOI	PSI)						•				•	•	•	•	•	•	•		•		•		•	•		8
	VEH															•	•	•	•		•		•	•				18
TEST PROCEE	URE	5 /	NNC)	RES	UL	.TS	1	•	•	•	•	•			•	•		•	•	•		•	•				39
	1	PS	D	Sł	IAI	PIN	G			•				•	•	•	•	•	•	•	•		•	٠			•	39
	11	ME	AS	U	REI	4EN	Т	11	VTE	ERI	A	L		•		•	•	•	•		•	•		•	•	•	•	56
CONCLUS TONS													•			•	•	•	•		•	•	•	•	•	•		63
RECOMMENDAT	1014	5					•	•			•		•	•		•			•	•	•	•	•	•				64
ACKNOW LEDGE	MEN	TS											•		•	•	•		•	•	•	•	•	•	.•	•		64
REFERENCES						•	•						•	•	•	•	•			•	•		•	•	•	•	•	65
APPENDIX A	(DO	CUP	1EN	IT/	\T	ON	0	F	NC)	'SI	0)	•	•			•	•	•	s	•	•	•	•	•		•	67
APPENDIX B	(DO	CUP	ÆN	IT/	T	ON	0	F	VE	H)	`		•	•	•	•		•	•	•	•	•	•	•	•	•		78
APPENDIX C	(VEI	HIC	LE		A	RAH	E7	EI	1	.15	T	Al	ND	WC	R	Sł	E	ET))	•		ı	•	•	•			103
APPENDIX D	(DO	CUP	EN	IT/	\T	ON	0	F	Pk	R	L	7)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1 12

H

LIST OF SYMBOLS

A	smoothing coefficients	• •
C	constant	
C	covariance, autocovariance	in
D	horizontal displacement	In) =
D'	vertical displacement	in
F	force on axle	16
F ₂ '	force on rear bogie	1Ь
f	frequency	cycles/in
9	acceleration due to gravity	In/sec ²
h	positive integer	-
10	pitch moment of inertia	lb-sec ² /in
K	equivalent degrees of freedom	-
k	spring constant	lb/in
4	geometrical vehicle parameters	In
m	maximum lag	-
m,	mass	lb-sec ² /In
N	number of points in profile	-
n	slope of PSD curve	-
Ρ .	power spectral density estimate	in ² /cycle/in
Pi	ground force on axle	16
•	positive integer	-
t	time (or distance)	sec (In)
U(r)	smoothed spectral density estimate	in ² /cycle/in

LIST OF SYMBOLS (Gont'd)

V	random normal number	
V(r)	raw spectral density estimate	in ² /cycle/in
x	displacement	In
γ .	displacement	În
z	uniform random number	•
z	vertical displacement	În
Greek	Letters	
α	spacial cutoff frequency	cycles/in
β	angle	radians
Y	vertical spring force component	lb/in
Δ	suspension displacement	to in
ΔL	profile point spacing	in
0 .	pitch angle	radians
π	constant (3.14159)	•
σn	standard deviation	•
τ	profile spacing in NOIPSD	In
	lag in literature on PSD	-
0ther		
<	less than	
\$	less than or equal to	
>	greater than	
2	greater than or equal to	
•	approaches continuously	Ξ.
*	multiplication (eg. 2*3 = 6)	

LIST OF FIGURES

1.	Subjective Ride Criterion	3
2.	Example of Allasing	13
3.	Relative Accuracy vs. Equivalent Degrees of Freedom	17
4.	Schematic of General Wheeled Vehicle Model	20
5.	Free Bodies of Vehicle Model	21
6.	Tire Model Spring Locations	25
7.	Tire Force-Deflection Curves for M151	27
8.	Tire Deflection With Dead Load	28
9.	Final Elements of Tire Model	28
10.	Numbering Scheme for Tire Segments	30
11.	Segmented Linear Spring Force	33
12.	Analog Circuit for Absorbed Power Computation	38
13.	PSD of Profile 1	41
14.	PSD of Profile 2	42
15.	PSD of Profile 3	43
16.	PSD of Profile 4	44
17.	PSD of Profile 5	45
18.	PSD of Profile 6	46
19.	Comparison of PSD Curves	47
20.	Section of Profiles 1 and 2	48
21.	Section of Profiles 3 and 4	49
22.	Section of Profiles 5 and 6	50
23.	Results of M151 Critical Velocity Tests	51

LIST OF FIGURES (Con't).

24.	Results of H151 Average Absorbed Power Tests	•	•	•	•	•	4	•	•	5
25.	Results of HJ5 Average Absorbed Power Tests		•		•				•	5
25.	Effects of Changing Input Profile Spacing .	•	•	•		•		•	•	5
27.	PSD of Profile used for Measurment Interval V	ler	le	t	lo	•	•	•	•	5
28.	Results of Measurement Interval Variation on Absorbed Power	Av	/el	raș	ge ·		•	•		64
C1.	Geometrical Vehicle Parameters			•						10
C2.	Segented-Linear Spring Force Approximation .	•			•	•		•		100
c3 .	Segmented-Linear Damping Force Approximation	•			•,	•	•	•	•	103

U

LIST OF TABLES

1.	Values of NG and & for NOIPSD Execution	•	•	•	•	•			•	•	•	10
2.	Values of NG and α for NOIPSD Execution	•									•	39
3.	Results of M151 Critical Speed Tests .	•			•		•	•		•		41
4.	Results of Measurement Interval Tests .	•	٠				•					61

INTRODUCTION

For some time, off-road mobility has been of manifest importance to designers of military vehicles. The problem has been to design a vehicle to traverse terrain with certain characteristics at a reasonable speed with negligible adverse effects on vehicle payload or driver.

This study concerns itself with some of the problems encountered in describing and measuring terrain characteristics -- in particular, ground roughness.

BACKGROUND

The characteristics of a terrain can be numerous. They may include, among others, slope, obstacles, vegetation, soil strength, and roughness. It has been shown, however, that the single most speed-limiting aspect of off-road mobility is ride dynamics. The study of ride dynamics concerns itself with human and cargo response to vibration. This vibration may be caused by terrain roughness and/or discrete obstacles, and filtered by the vehicle mass, geometry, and suspension system. Vibration caused by traversal of discrete obstacles (logs, small ditches) is transient in nature and vehicle speed is limited more by vehicle strength and operator judgement and experience than by vibrational characteristics. On the other hand, vibration due to stationary ground roughness is close to a steady-state condition; dependent on vehicle velocity. An operator will, if properly motivated, increase the vehicle speed until some degree of

mum speed a vehicle with driver can maintain over a certain terrain, then, is determined by:

(1) Terrain roughness

11

U

I

- (2) Vehicle strength and suspension
- (3) Driver discomfort (or payload delicacy)

It has long been recognized that some quantitative measure of the last of these, driver discomfort, is necessary to ride dynamics research. Hany studies have been conducted in an attempt to determine some subjective measure. Van Deusen shows the apparent futility of this approach and some of the resultant confusion in a composite graph, reproduced in Figure 1.²

Several quantitative measures have been used with greater success. They include, but are not limited to: RMS acceleration at the driver's seat (or the area under the RMS acceleration time history)¹; maximum acceleration at the driver seat²; the amplitude probability distribution of driver acceleration¹; and absorbed power, a concept generated by Lee and Pradko³ which is intended to quantify the energy dissipated by the human in the vibration of his limbs and flesh and counteracted partially by muscular control. In the words of Lee and Pradko³:

The important characteristics of absorbed power are are that it has physical significance and therefore can be measured as well as computed analytically; and that since power is a scalar quantity, absorbed power can be summed in complex multidegree of freedom systems to determine human response.

The results of an earlier effort by the same authors show that absorbed power levels measured at the driver's seat seem to agree more

- Ziegenruecker and Magid "Actual bodily harm feared"
- Magid & Coermann 'One minute tolerance' 2.
- Diekmann "Intolerable"
- Gorrill & Snyder "Alarming"
 Parks and Snyder "Alarming" (3/4" felt pad)
- Zeller "Upper tolerance limit"
- Goldman "Intolerable"

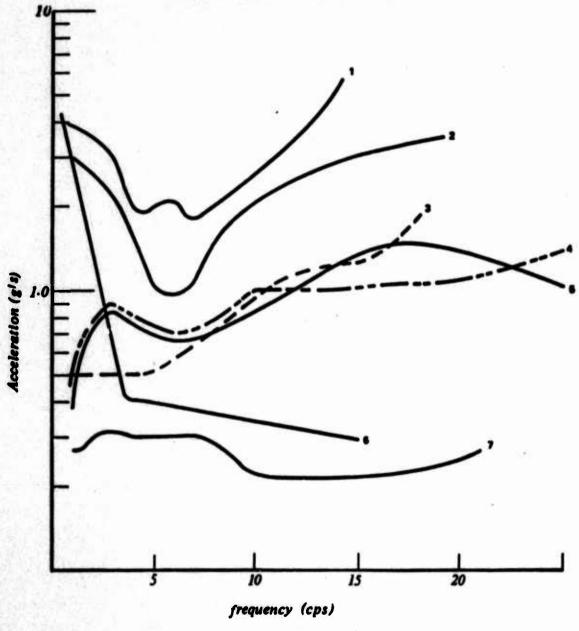


Figure 1. Subjective Ride Criterion

Thus, the current study will use the absorbed power concept. Even among proponents of this criteria, there is confusion over the question of what level of absorbed power should be considered speed-limiting. Six watts, being a generally accepted figure, will be used herein with no apologies to those who consider it too low.

This research concerns itself, not with the driver discomfort or vehicle systems problem, but with the first factor mentioned above -- terrain roughness.

Recently, (1972) power spectral density (PSD) estimates have been used to describe terrain roughness statistically. The mathematical definitions of PSD will be discussed in some detail later. When PSD estimates for real terrain waveforms are required, the problems of aliasing and stationarity become important. Aliasing is a condition where false evidence of certain frequencies appears because the discrete sampling interval is longer than the shortest wavelength present. Stationarity, briefly, is the absence of long-range changes in underlying statistical properties.

The first proposal of the PSD's use to characterize stable ground roughness came from Kozin, Cote, and Bogdanoff in 1963. They found that for "visually constant" ground roughness, stationarity could be safely assumed for terrain segments up to 2000 feet. They used running averages to correct for unavoidable long-range trends such as hills.

Others have shown that the PSD curves of most natural and man-made surfaces can be approximated with the equation:

$$PSD(f) = Cf^{n}$$
 (1)

where f = frequency

which defines a straight line on a log-log plot, with slope of n.

Van Deusen, in 1967, gave evidence to show that for most natural or man-made surfaces, the slope is roughly -2.

Other researchers have subsequently used the -2 approximation in ride dynamics work, using computer simulation of both the terrain and the vehicle. Before substantive work using a computer simulation is undertaken, the assumptions made when implementing that simulation must be shown not to significantly affect the results of the research. In past studies, several assumptions have been made regarding the computer-generated terrain profiles:

- (1) That the profiles pass the test for stationarity.
 (Murphy used a program called STANOR to actually test his profiles.)
- (2) That, as mentioned above, the slope of the PSD curve is -2.0 for any real terrain.
- (3) That the input spacing can be set to any arbitrary value (Murphy used 3.07 inches; Kozin used up to 2 feet to estimate the PSD's of real terrain⁵).

The first of these assumptions seems reasonable; especially if the input is generated from random numbers which are stationary. This will be discussed in more detail later. The second two leave some questions unanswered.

in recent work, as yet unpublished, Murphy has measured over sixty actual ground roughness profiles. He has found that the slopes of their PSD curves vary from -0.6 to -2.3. Does the assumption of a -2.0 slope, then, cause significant errors in ride analysis? To answer this question is the first objective of this research. This objective will be attacked by testing the vehicle ride simulation for sensitivity to changes in PSD slope, keeping other statistical parameters constant.

The second assumption concerns a more practical matter. An investigator involved in taking field data for terrain roughness analysis has to trade off time and money considerations against accuracy. Taking data points using transit and rod is time consuming -- thus expensive. Taking data closer together increases cost; while choosing too great a measurement interval decreases accuracy. Theoretically, some point exists where further reduction of interval wastes money. Likewise, at some point a further increase causes a serious reduction in accuracy. The second objective of this report is to obtain some quantitative grasp of the accuracy of vehicle model performance versus distance between data points. This will be accomplished by creating a single terrain profile with a small interval and exercising a computer vehicle simulation over this

terrain at different measurement intervals.

U

DISCUSSION AND COMPUTER CALCULATIONS

NOIPSD

The first requirement of this study was the generation of terrain profiles, created with random amplitudes. In addition, some control of statistical properties was necessary. A computer program (NOISE1) written for this purpose was obtained from Mr. N. S. Murphy Jr. of the Waterways Experiment Station. Another program, PSD, was designed to accomplish the PSD estimation. To reduce the execution time, NOISE1 and PSD were combined to form the program NOIPSD. Unfortunately, both were written for a GE400 machine, while the computer available was a PDP-10. This necessitated several adjustments in the program, in addition to translation into a different Fortran language. A description of the program and the changes made in its basic structure follows. A program lising is in Appendix A.

First, a random number generator was required. Since these generators (sub-programs) are generally machine-specific, some alteration of the program was necessary. An internal PDP-10 program, called RAN(Z), was used to obtain twelve uniform random numbers between zero and one for each profile point. It was desired that each terrain profile be different. RAN(Z), however, has a fixed starting number for each program execution. This is analagous to having a fixed table of random numbers from which to choose. Obviously, then, each execution would result in the same profile shape. It was decided to use a scheme in which a "skipping number" was used to cause the

program to produce different profiles while maintaining their random nature. Twelve normal random numbers between zero and one are used to obtain random numbers with zero mean by the uniform deviates method:

$$V_j = \sigma_n (\sum_{i=1}^{12} z_i - 6.0) (j = 1,2,3,...,1200)$$

where $V_1 = a$ random normal number with zero mean

0

0

 z_i = a uniform random number from RAN (Z)

 $\sigma_{\rm n}$ = desired standard deviation of V

Before each twelve numbers used from the "table" of random numbers,

NG (the "skipping number") points were skipped. NG should be kept

relatively low to reduce computer time. Prime numbers were assigned

to NG each time NOIPSD was run to insure profile difference.

After all the V_j 's are determined, their mean is computed. It should be zero and usually is very small. To make sure, each V_j is then shifted by the computed mean.

This procedure gives white Gaussian noise, which has essentially a level power spectral density curve. The above spectrum is shaped using a digital simulation of an analog low-pass filter:

$$Y_{i} = V_{i} + Y_{i-1} e^{-\alpha t}$$

where Y_i = the resulting profile

 α = the spacial cutoff frequency

T = the interval between points (constant)

The product $\alpha\tau$ is used to adjust the frequency content of the profile. For most of this study, τ was kept at a constant 4.0 inches. The value chosen for α , then, determined the ultimate power spectral density slope. A table of α values was determined by trial and error and is given below:

Table 1 (Valid for $\tau = 4.0$)

Desired Slope	Use NG of	Use of			
-0.60	2	.2575			
-1.20	19	.0888			
-1.85	13	.0129			
-2.00	7	.0052			
-2.15	11	.00138			
-2.30	3	.00016			

Next, the desired RMS level (DRMS)* is achieved by computing the actual RMS (ARMS) and adjusting each point by the factor DRMS/ARMS.

This results in the desired results, and completes the profile generation portion of the program.

Before continuing on in the program description, the mathematical definitions of the autocovariance function and power spectral density estimation need to be presented.

^{*}Names in parentheses indicate program variables. See Appendix A.

Assume X(t) is a continuous, infinite waveform. The <u>covariances</u> (C_{11}) are defined by:⁷

$$c_{1j} = cov \{X(t_1), X(t_j)\}$$

$$= cov \{X(t_1), X(t_j)\} + [X(t_j), \overline{X}(t_j)]\}$$

where \overline{X} indicates the mean.

Û

0

0

Ö

0

0

Since the terrain waveforms are created with zero mean, $\overline{X}(t_i) = \overline{X}(t_i) = \overline{X}(t_n) = 0.0$. It follows that:

$$C_{ij} = \underset{X}{\text{ave}} \left\{ X(t_i) * X(t_j) \right\}$$

Furthermore, assuming stationarity, the covariances will depend on time separation only.

$$C_{ij} = C(t_i-t_j) = C(\tau)$$

where τ is generally called lag. From this, and assuming ergodic properties, the covariance at lag τ can be written:

$$C(\tau) = \underset{t}{\text{ave}} \left\{ X(t) * X(t+\tau) \right\}$$

or, in functional notation:

$$C(\tau) = \lim_{T\to\infty} \frac{1}{T} \int_{-T/2}^{T/2} X(t) * X(t+\tau) dt$$
 (2)

which is generally called the <u>autocovariance</u> function. Equation (2) may, in the ideal case, be reduced to:⁷

$$C(\tau) = \int_{-\infty}^{\infty} P(f) \pm e^{12\pi f r} df \qquad (3)$$

where

$$P(f) = \lim_{T \to \infty} \frac{1}{T} \left| \int_{-T/2}^{T/2} X(t) *e^{-12\pi f t} dt \right|^{2}$$
 (4)

which defines P(f), the <u>power spectral density</u> of the X(t) waveform.

Note that t, the independent variable, may be either time or distance.

If Equation (3) is inverted, the power spectral density (PSD) is seen to be the Fourier transform of the autocovariance function:

$$P(f) = \int_{-\infty}^{\infty} C(\tau) * e^{-\frac{1}{2}\pi f \tau} d\tau$$

Since $C(\dot{\tau})$ is an even function (symmetric about the zero axis), the equation may be simply written:

$$P(f) = 2 \int_0^{\infty} C(\tau) * \cos(2\pi f \tau) d\tau$$

In the particular case considered herein, the data to be analyzed is discrete and equally spaced. One very important problem to be considered in these cases is aliasing. If the data is taken from a continuous waveform at equally spaced intervals, as would be the case in recording a real terrain, some frequency estimates are distorted. The basic problem is illustrated in Figure 2 which shows

0

0

0

1

(J)

B

1

()

0

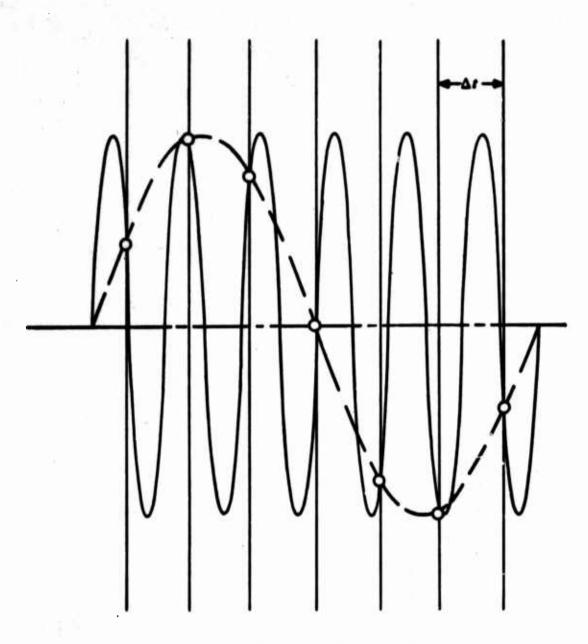


Figure 2. Example of Aliasing

how, in equi-spaced sampling of a sine wave, an imaginary longer wavelength appears to be present. In the present case, the discrete terrain data are not measured from a continuous source, but created in its discrete form. The highest frequency possible is $1/(2\Delta t)$ which is used as the high cut-off frequency. Aliasing, in this special case, is of no concern.

For discrete data, Blackman and Tukey suggest a three-step method for power spectral density estimation: ⁷

(1) If X(1),X(2),X(3),...,X(N) is the discrete series with interval ΔL between values, the autocovariance is computed with lag $\tau = h + \Delta L$ as follows:

$$C(\tau) = \frac{1}{N-hr} q = 0 \left(X(q) * X(q+hr) \right)$$
 (5)

where N = number of points r = 0, 1, 2, ..., m $m \le N/h = maximum lag$ h > 0 (integer)

(2) The raw spectral estimate is computed:

$$V(r) = \Delta \tau \left[C_0 + 2 \prod_{q=1}^{m-1} \left(C_q * \cos(q r \pi / m) \right) + C_m * \cos(r \pi) \right]$$
where $f(r) = r/(2m\Delta \tau)$

$$r = 0, 1, 2, ..., m$$

$$C_1 = C(\tau_1)$$
(6)

(3) Due to the finite number of data to be analyzed and the discrete number of lags, the spectral estimate must be smoothed. Hamming is used in this analysis:

$$U(r) - A_{10}V_r + j \sum_{i=1}^{n} A_{ij} \left[V_{r+j} + V_{r-j} \right]$$
 (7)

where, for hamming: (1-3)

1

Returning to the computer program, NOIPSD, the first step in the PSD estimation process is to compute the maximum number of lags (LLAG). From Blackman and Tukey the equation is: ⁷

where K = the equivalent number of degrees of freedom of a chi-square distribution

N = number of points in profile

LLAG = number of lags (max lags)

T - profile specing

Solving the above equation for the number of lags:

LLAG -
$$\frac{6N}{\tau(3K+2)}$$

Obviously, a balance exists among the number of points, N, the number of lags, and K. The choice of K determines the degree of accuracy of the estimate, as seen in Figure 3. It shows the distribution of PSD estimates, for instance, as fixed multiples of their average values. As an example, consider a PSD estimate which has an average value of $10 \text{ in}^3/\text{cycle}$. For K = 10, individual estimates will. in the long run, fall below .49 times its average value (4.9 in 3/cycle). in brief, 80 percent of all values would fall within the interval 4.9 to 16.0. As can be seen, higher values of Kigive higher accuracy. But for a fixed N, the number of lags decreases with K, reducing the amount of information in the PSD curve. Thus with a very high K, one point on the PSD curve would result. It would be very accurate, but not of much use. For N = 1200 and $\tau = 4.0$, a value of K = 20 gives 30 lags. This value of K gives reasonable accuracy of estimates while giving a reasonable number of lags. Since the program must allow for changes in N and T , the equation was written:

 $m = LLAG = 6N/(62*\tau)$

which is used in the program.

1

The autocovariance computation is done by using h=1 in equation (5). A check is made on the RMS level at this point by taking the square root of the first (r=0) autocovariance, which should equal the desired RMS.

Next, the raw spectral estimates (PX) are computed using equation (4), and smoothed by hamming to give the smoothed power

0

N

0

0

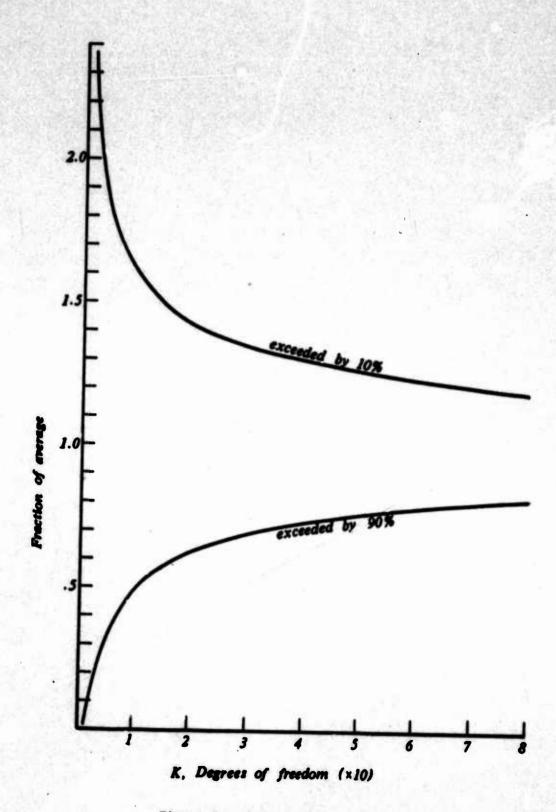


Figure 3. Relative Accuracy vs. Equivalent Degrees of Freedom

spectral density estimates (SPX):

I

0

0

0

0

$$SPX(1) = .54PX(1) + .46PX(2)$$

$$SPX(j) = .23PX(j-1) + .54PX(j) + .23PX(j+1)$$

$$(j=2,3,4,...,m-1)$$

$$SPX(m) = .54PX(m) + .46PX(m-1)$$

Finally, after discarding PSD points outside the low and high cut-off frequencies, the smoothed PSD estimates are fitted to a straight line on a log-log plot, using a least square fit routine. The result is an equation:

where C = the intercept of the line at f=1.0

f = frequency

n = slope of the line

This completes the discussion of NOIPSD.

VEH

The next major requirement of this work was a vehicle simulation. Again this was, in its original form, obtained from Mr. N. S. Murphy Jr., WES. The program was also translated to PDP-10 FORTRAN IV for use herein. Several subprograms were changed or added for this study, including DATA, GAMSUB, WHEELS, PRINT, and FILIN. Basically, this computer program is a 2-dimensional, 5-degree-of-freedom simulation.

The following assumptions were made in deriving the equations of motion:

- (1) The vehicle sprung mass is rigid.
- (2) The only forces acting on the sprung mess are suspension forces.
- (3) There is no surge acceleration or motion in sway, yaw, or roll degrees of freedom.
- (4) Pitch is small enough to allow a small-angle approximation.

Assumption 3 was made reluctantly, but was necessitated by time and cost considerations. The others are reasonable considering the purpose of the simulation.

Figure 4 shows a schematic of the general wheeled vehicle model. Three axles are shown and that is the maximum number which can be simulated with this model. A two-axle vehicle is modeled by setting L_3 , L_4 , and m_3 equal to zero. Thus, the one model can simulate almost any conventional vehicle. In this study, one 2-axle and one 3-axle vehicle are used. They are the M151 Jeep and the M35 $2\frac{1}{2}$ T Truck, respectively.

The equations of motion were written using Newton's Law on each of the free-body masses shown in Figure 5.

Body:

Sum of vertical forces:

$$m_0\ddot{z} = F_1 + F_2' - m_0g$$
 (8)

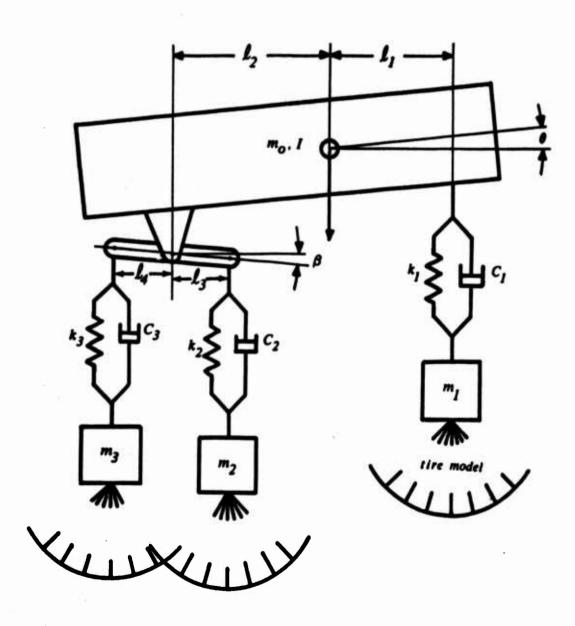


Figure 4. Schematic of General Wheeled Vehicle Model

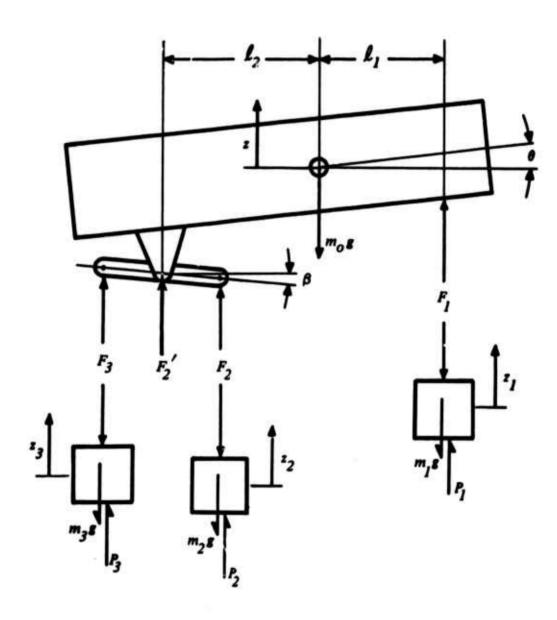


Figure 5. Free Bodies of General Wheeled Vehicle Model

Sum of moments about pitch axis:

$$I\ddot{\theta} = F_1 t_1 \cos \theta - F_2' t_2 \cos \theta \tag{9}$$

Unsprung masses:

0

招

8

Sum of vertical forces:

$$m_1\ddot{z}_1 = -F_1 - m_1g + P_1 \quad (i=1,2,3)$$
 (10)

The angle β is defined in the rear suspension geometry as in Figure 5. The forces F_1,F_2' , and P_1 are diffined:

$$F_{1} = k_{1}\Delta_{1} + C_{1}\Delta_{2}$$

$$\Delta_{1} = z_{1} - z - \ell_{1} \sin \theta$$

$$\Delta_{1} = z_{1} - z - \ell_{1} \dot{\theta} \cos \theta$$

$$F_{2}' = F_{2} + F_{3}$$

$$F_{2} = k_{2}\Delta_{2} + C_{2}\Delta_{2}$$

$$\Delta_{2} = z_{2} - z + L_{2} \sin \theta - L_{3} \sin \theta$$

$$\Delta_{2} = \dot{z}_{2} - \dot{z} + L_{2}\dot{\theta} \cos \theta - L_{3}\dot{\theta} \cos \theta$$

$$F_{3} = k_{3}\Delta_{3} + C_{3}\Delta_{3}$$

$$\Delta_{3} = z_{3} - z + L_{2} \sin \theta + L_{4} \sin \theta$$

$$\Delta_{3} = \dot{z}_{3} - \dot{z} + L_{2}\dot{\theta} \cos \theta + L_{4}\dot{\theta} \cos \theta$$

P = forces from terrain profile as transmitted by the tire model.

The program named VEH is designed to solve equations 8, 9, and 10. Basically, it performs its function using a fourth order Runge-Kutta-Gill algorithm. A program listing is in Appendix B.

Before the calculations are begun, program options and variable parameters are fed into the program, normally by teletype on a remote hookup. The program options determine which parts of the program will be executed. The variable parameters include the input profile name, tire deflections, vehicle velocity in miles per hour and the teletype printout time interval. These parameters will be explained more fully in the text that follows.

First, VEH calls subroutine FiLIN. On this initial call, FiLIN requests an input of <u>desired</u> ΔL (DELTAL)*, which may be any integer multiple (≥1) of the input profile spacing. FILIN then reads the <u>actual</u> input profile spacing (SPACING), the profile identification line (FID) and the first ten profile points (FYIN) from the input file. A parameter, MM, is then calculated by the following formula:

MM = DELTAL SPACING

which defines the number of profile points (FYIN) to be skipped between each two points returned to the main program. Thus, if the spacing in the input profile is 1.0 inches and the desired spacing is 4.0 inches, MM = 4. Every fourth point will be returned to the main program. This feature was added to allow investigation in this study

^{*}The words in parentheses are the parameter names in the program listing. See Appendix B.

of the effect of input profile spacing on simulation performance.

B

After the vehicle name and the program options are read, the program calls subroutine DATA. DATA sets the vehicle parameters to the proper values. It must contain every vehicle parameter necessary to simulate the desired vehicle. Some of the data statements contain values of interest only for tracked vehicles. The tracked vehicle subroutines are not included, but the data was left in case later investigators wish to use the program. The tracked vehicle subroutines are available if desired. For wheeled vehicle simulation, a list of necessary vehicle parameters for inclusion in subroutine DATA is given in Appendix C.

After most of the parameters are set, but before returning to the main program, DATA calls subroutine GAMSUB, which computes the parameters used in the radial-spring tire model. The tire model is constructed under the assumption that a tire can be simulated by a series of radial springs, as in Figure 6. In the original program, the calculations done in GAMSUB were made by hand and inserted through subroutine DATA. In this study it was desired to change the input profile spacing from one execution to the next. Thus, GAMSUB takes into account the input profile spacing (DELTAL) and "creates" radial springs such that the distance between the projections of their outer ends on a horizontal surface will be exactly equal to the profile spacing. Thus, D_1 , D_2 ,..., D_{kk} are multiples of DELTAL. The maximum angle allowed from the vertical is roughly 53 degrees. One spring is always placed vertical, the others symmetrical to front and rear.

B

1

1

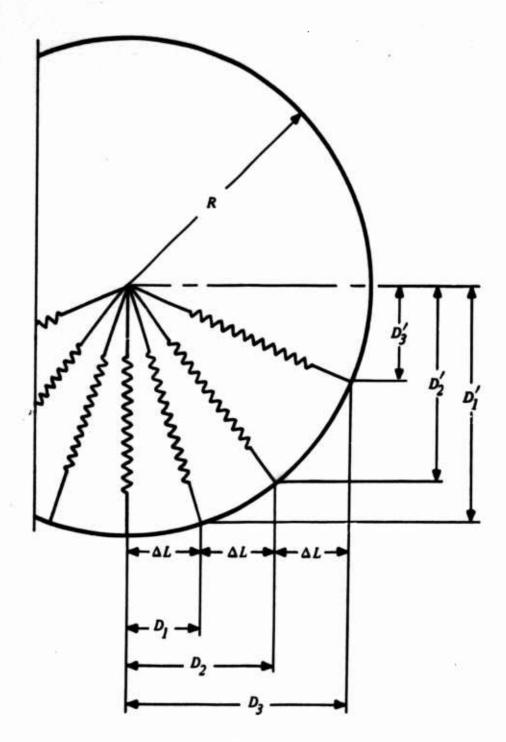


Figure 6. Tire Model Spring Locations

Besically, Y (GAMMA) is the vertical component of the redial spring force-deflection function. Each redial spring is assumed to have the same spring rate, which is determined separately for each tire from the tire force-deflection curve. The curves for Mi51 tires, for instance, are shown in Figure 7. The curves are very close to being straight lines, so a linear approximation is used. The load on each tire is computed (note that for 3-axie vehicles the rear tires are assumed to be duals) and typed out, in order from front to rear, on the teletype. After each load, a tire deflection is entered by the operator. Care must be taken to enter the deflection at the proper inflation pressure. The Hi51 Jeep, for instance, should have 18 psi in the front tires and 22 psi in the part for cross-country operation. GAMSUB then computes the radial spring force for each tire. SPKF, SPKR1, AND SPKR2 are the program variables for these spring forces front to rear. They are computed in the following manner:

Suppose the dead load on the tire causes a tire deflection (Y) as in Figure 8. The radial spring constant (SPK) is computed from the dead load (WEIGHT) and spring deflections (DELTA) as follows:

WEIGHT =
$$\Sigma$$
 SPK*cos ϕ_i *DELTA, (11)

where SPK*cos θ_1 = the vertical component of SPK

0

0

0

NSEQS = 2*KK+1, the number of radial springs in the tire model.

$$SPK = \frac{WEIGHT}{NSEGS}$$

$$\Sigma \cos \varphi_{i} * DELTA_{i}$$

$$i=1$$
(12)

IJ

0

0

1

u

0

O

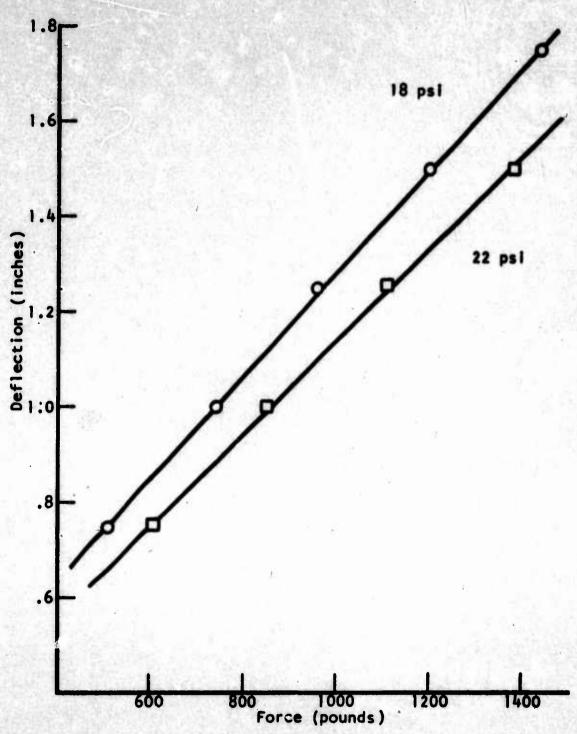


Figure 7. Tire Force-Deflection Curves for M151

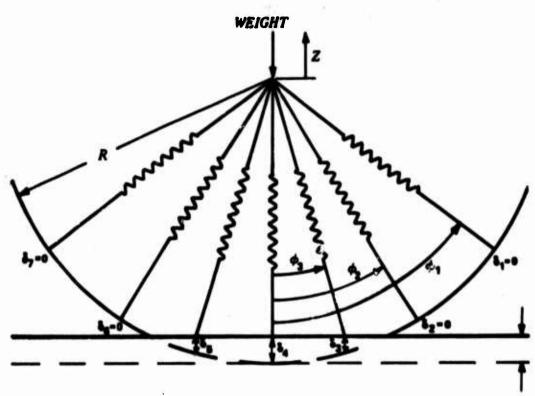


Figure 8. Tire Deflection with Dead Load

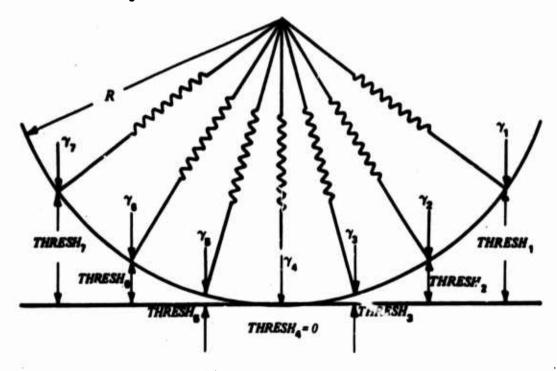


Figure 9. Final Elements of Tire Model

since SPK is assumed constant. In addition, since $\cos \theta_i$ can be written (see Figure 6):

$$\cos \theta_1 = \frac{\theta_1'}{R}$$

equation (9) becomes:

$$SPK = \frac{WEIGHT}{NSEGS \frac{D'_{1}}{R} * DELTA_{1}}$$

$$= \frac{\sum_{i=1}^{R} * DELTA_{i}}{R}$$
(13)

where $DELTA_i = Y - THRESH_i - z$ (if $DELTA_i$ is < 0.0, $DELTA_i = 0.$) $THRESH_i = R - D_i'$ (see Figure 9)

R = the undeflected tire radius

Note that in this case, Y causes deflections only in three of the radial springs. Thus, $DELTA_1 = DELTA_2 = DELTA_6 = DELTA_7 = 0.0$ and equation (11) becomes:

SPK =
$$\frac{\frac{\text{WEIGHT}}{D_3'}}{\frac{D_4'}{R} * \text{DELTA}_4} + \frac{D_5'}{R} * \frac{\text{DELTA}_5}{R}$$

The radial spring rates for different tires on the same vehicle may vary, either because of different inflation pressures or different load distribution.

As the final step, GAMSUB computes the values for GAMMA by the equation:

For computer notation, the GAMMA's are numbered from front to rear of the vehicle as shown in Figure 10.

front of vehicle

0

Figure 10: Numbering Scheme for Tire Segments

Upon return to the main program, the number of steps to be used in the Runge-Kutta-Gill (RKG) algorithm is computed, based of vehicle velocity. The step size is desired to be roughly .001, which is adjusted slightly to insure an exact number of steps between input terrain profile points. This completes the preliminary calculations.

The program enters an integration loop at this point, starting effectively with the calling for the second time of subroutine FILIN.

Each time FILIN is called from the integration loop, it simply returns one profile point (YIN) to the main program.

If a detailed output file is desired, the program calls FILWRT, which writes time (T), YIN, and absorbed power (ABSPWR) for each step. It also writes displacement, velocity, acceleration, and RMS

The force exerted through the suspension system to the body must now be computed for each exle.

WHEELS allows considerable flexibility in modeling springdeflection-vs.-force curves and in modeling damping-force-vs.deflection-velocity curves. Both curves are specified by data statements in subroutine DATA.

The spring force-deflection function of a typical suspension spring can be approximated by five linear segments, as shown in Figure 11.

The deflection axis can be divided into five regions:

Region 1: $-\infty$ to x_1 Region 2: x_1 to x_2 Region 3: x_2 to x_3 Region 4: x_3 to x_4 Region 5: x_4 to $+\infty$

The x_1 are the region limits (SLIMIT,).

in each region, the force-deflection function is approximated by
a linear equation of the form:

where FORCK = resultant spring force

m = slope of the line (SSLOPE)

SPDEF = deflection of the spring

C = intercept of the line at SPDEF = 0.0 (SINT)

| = axle number

acceleration of the center of gravity, the pitch, and each axie. If
the teletype printout interval is exceeded, subroutine PRINT is
called, which causes the same information to be typed out. If desired,
PRINT will cause only time and absorbed power to be printed out.
PRINT also asks the operator if he desires to stop execution. If the
enswer is yes, the main program transfers out of the integration loop.

If the enswer is not yes, the main program then calls subroutine SHIFT.

SHIFT, as the name implies, causes each profile point to be shifted by DELTAL inches to the rear of the vehicle. The main program then sets the first profile point to equal YIN and continues.

Next, the differential equations are solved. For each RKG step between profile points, the suspension forces are calculated by a subroutine called WHEELS.

The first thing done by WHEELS is the computation of the forces on each axle (FORCW). It uses the same method as before to determine radial tire-model spring deflections, DELTA:

where j = axle number

no negative values of DELTA are allowed

 Y_k = elevation of the profile point under the k-th spring

The axle forces (FORCW) are:

FORCW =
$$\sum_{i=1}^{NSEGS} DELTA_i * GAMMA_i$$
 (j=1,2,3)

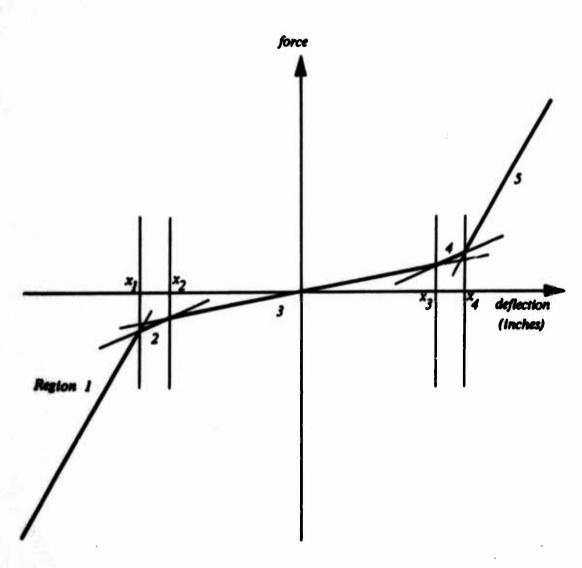


Figure 11. Segmented-Linear Spring Force Approximation

The simulation of the suspension damping function is essentially the same. Details are given in Appendix C.

Thus, after computing the suspension spring deflection (SPDEF) and deflection velocity (DSPDF), subroutine WHEELS compares their values with the region limits, decides which equations to use, and computes the suspension forces (FORCK and DAMP).

Execution then returns to the main program, which immediately calls subroutine RUNGE, the RKG integration scheme. Next, if the absorbed power option is requested, subroutines POWER and RUNGE are used to compute it.

an attempt to resolve the confusion in driver vibration limits exhibited by Figure 1. It was theorized by Lee, Pradko and others 3,4 that the driver will adjust the vehicle conditions (e.g., speed) so that he can completely absorb, by flexing and unflexing his muscles, all the power of the vibrations he receives from the vehicle in order to keep his eyes or hands steady to see clearly and operate the vehicle controls. A series of experiments indicated a great deal of merit in the concept and determined that 6 watts was a general level of power that the human can or is willing to absorb during driving. This has been accepted by many investigators in ride dynamics, not so much as an ultimate truth but as the best available now.

In the course of these studies several ways of calculating absorbed power were developed (the first three reported in Lee and $Pradko^3$):

A. For infinite averaging time:

everage absorbed power =
$$\lim_{T\to\infty} \frac{1}{T} \int_0^T F(t)v(t)dt$$

where: F(t) = Input force to the driver support (e.g., seet)

V(t) = input velocity of the driver support

B. For a finite averaging time:

$$\frac{1}{\omega_n^2} \frac{d^2 P(t)}{dt^2} + \frac{d P(t)}{dt} \left(\frac{2\delta}{\omega_n}\right) + P(t) = KF(t) V(t)$$

P(t) = finite average absorbed power

8 = damping factor

 ω_n = lowest frequency to be averaged (rad/sec)

F(t) = input force to the driver support

V(t) = input velocity to the driver support

K = conversion constant

C. In the frequency domain, it can be computed:

$$P = \sum_{i=0}^{N} K(f_i)(RMS_A(f_i))$$

where P = finite average absorbed power

 $K(f_t)$ = parameter dependent on frequency i

 $RMS_A(f_1) = RMS$ acceleration at frequency i

Tables of $K(f_1)$ are given in Reference 3.

D. Recently, work has been done at WES to create an algorithm to compute absorbed power in the time domain. The result was the following

0

B

0

Û

0

Û

Û

0

0

set of equations, derived from the analog circuits shown in Figure 12.

a(t) is the acceleration of the driver support, the other variables

may be considered as intermediate quantities needed in the calculation
of absorbed power.

$$\dot{x}_{11} = -0.1755 \ a(t) - 2.742 \ u_{2}$$

$$\dot{x}_{10} = -1.755 \ a(t) - 388.8 \ x_{11} - 46.67 \ x_{10}$$

$$u_{2} = -0.1755 \ a(t) - 1.042 \ x_{10}$$

$$\dot{x}_{9} = -10 \ u_{2} - 6.249 \ u_{1}$$

$$\dot{x}_{8} = -10 \ u_{2} - 78.59 \ x_{9} - 55.28 \ x_{8}$$

$$u_{1} = u_{2} - 3.246 \ x_{8}$$

$$\dot{x}_{7} = -100 \ u_{1} - 47.78 \ u_{0}$$

$$\dot{x}_{6} = -10 \ u_{1} + 71.6 \ x_{7} - 53.49 \ x_{6}$$

$$u_{0} = - u_{1} + 1.318 \ x_{6}$$

$$\dot{x}_{5} = -100 \ u_{0} - 59 \ x_{5}$$

$$\dot{x}_{2} = -0.01294 \ a(t)$$

$$\dot{x}_{1} = 0.00873 \ x_{2} \ x_{5}$$

$$PMR = \frac{100 \ x_{1}}{t}$$

In a study yet to be published, Murphy has found this latter algorithm to be accurate within the frequency range of interest (.50 to 20 cps). His version of subroutine POWER was used in the program.

After the integration scheme is completed for each step, the output scaling is accomplished, RMS accelerations are calculated, and a new profile point is obtained from FiLIN to begin the integration loop anew.

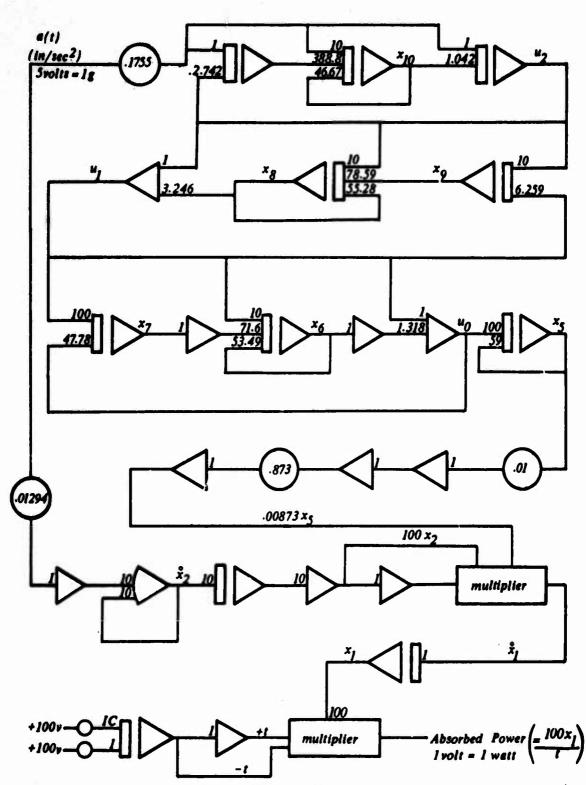


Figure 12. Analog Circuit for Absorbed Power Computation given by Murphy

TEST PROCEDURE AND RESULTS

B

0

0

0

I. The first objective, as stated previously, was to test the sensitivity of the vehicle simulation to changes in the PSD slope of the input terrain profile.

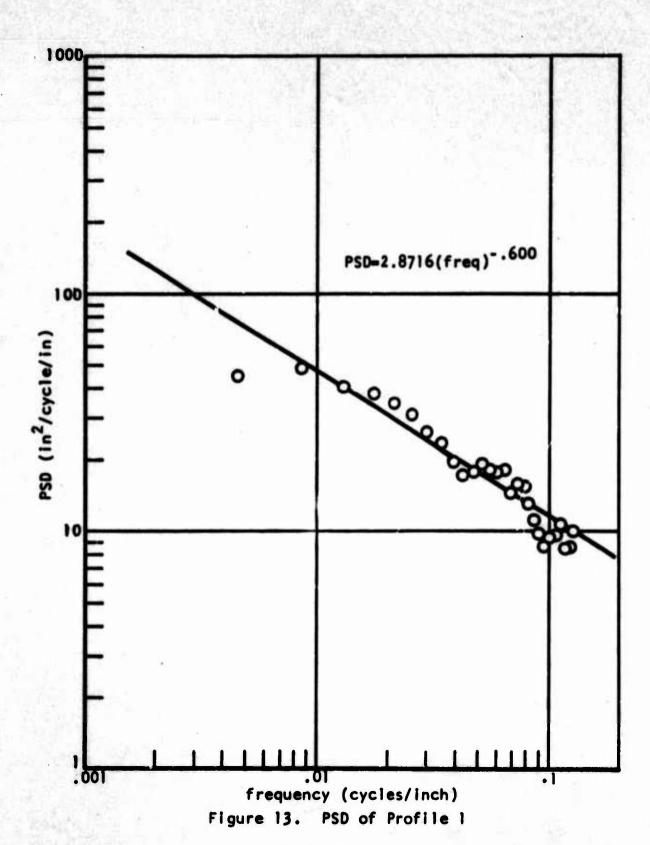
Six terrain profiles were created, using NOIPSD, with PSD slopes ranging from -0.6 to -2.3. Each profile had 1200 points spaced at 4-inch intervals and an RMS elevation of 4.0 inches. The inputs to NOIPSD for creation of these profiles are repeated in Table 2.

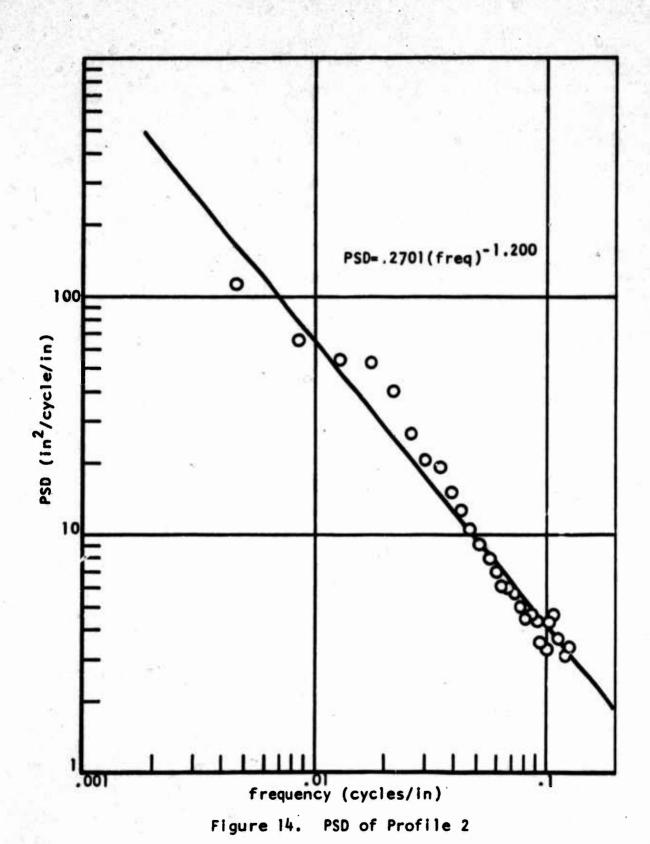
Table 2 (valid for $\tau = 4.0$)

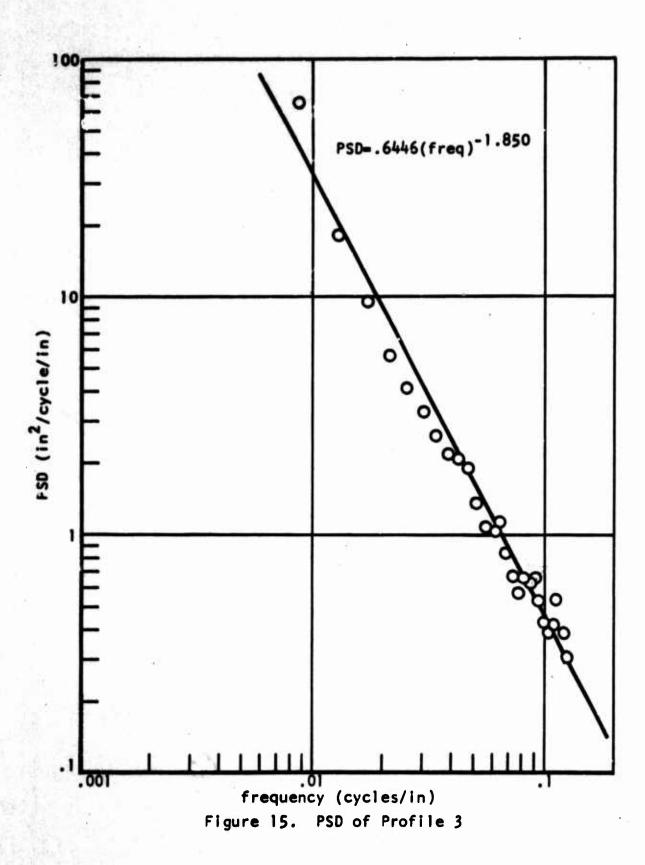
Use a
of
.2575
.0888
.0129
.0052
.00138
.00016

For PSD estimation, a low cut-off frequency (FLOW) of .0002 was used in each case. This caused the zero-frequency estimation to be deleted while all others were used in the curve-fitting routine. The zero-frequency (or infinite wavelength) component of the terrain profile would have no effect on the vehicle simulation. The resultant

PSD data and equations are shown in Figures 13 through 18. Figure 19 shows all six equations superimposed for comparison.


Figures 20 through 22 show the initial 40 feet of the terrain profiles. The vertical scales of the profiles are distorted by a factor of eight, so they appear rougher than they should. The high frequency component can be seen to decrease as the PSD slope becomes larger, which conforms to the expected trend.


Originally each vehicle was to be exercised over each profile, and by trial and error, a "critical speed" determined. This critical speed was defined as that speed at which the vehicle exhibited six watts absorbed power at the driver's seat. The M151 Jeep simulation was exercised first. Each simulation was run until the absorbed power seemed to stablilize (until several consecutive values were very close). This normally took from 4-6 seconds of real time. The following results were thus obtained:


Table 3

PSD S lope -0.60	H151 Critical Speed (mph) 2
-1.20	2
-1.85	4
-2.00	5
-2.15	10
-2.30	17

This data is plotted in Figure 21. At the end of one of the last runs,

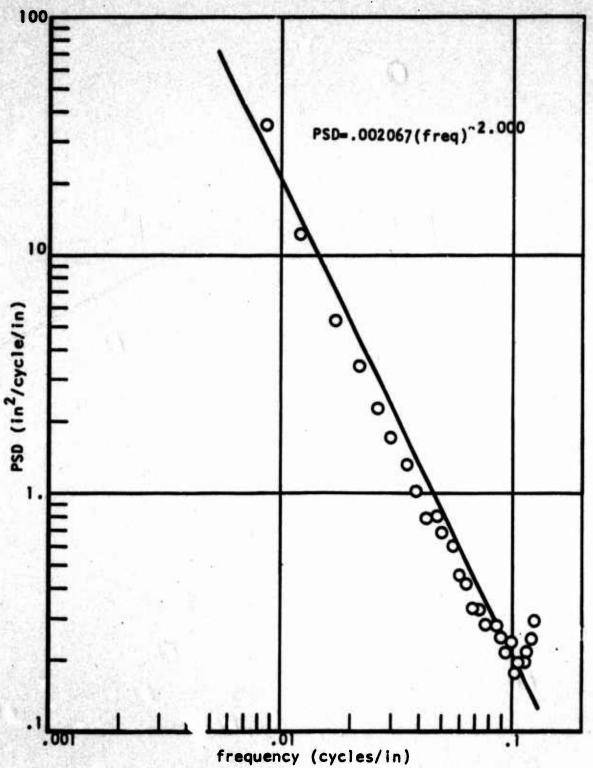
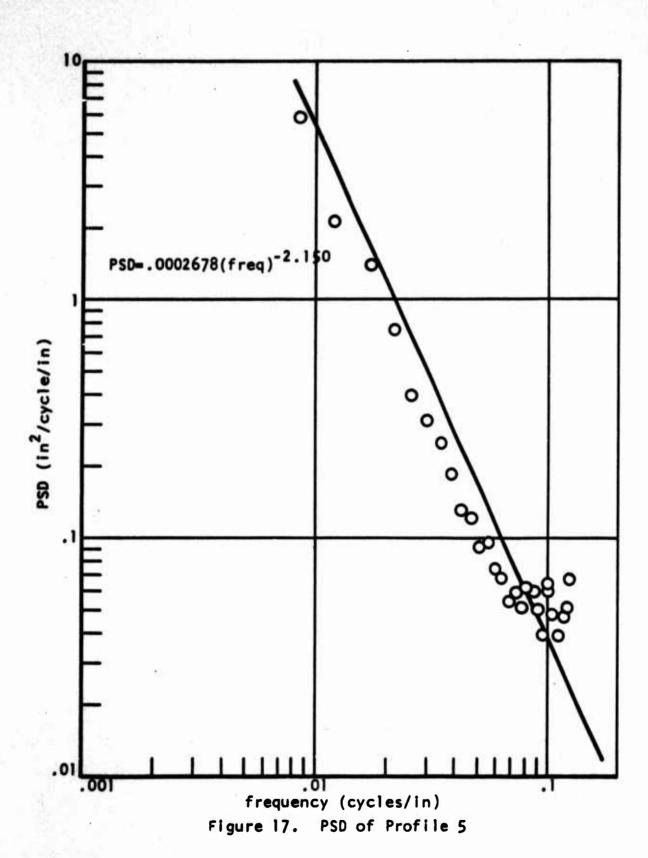
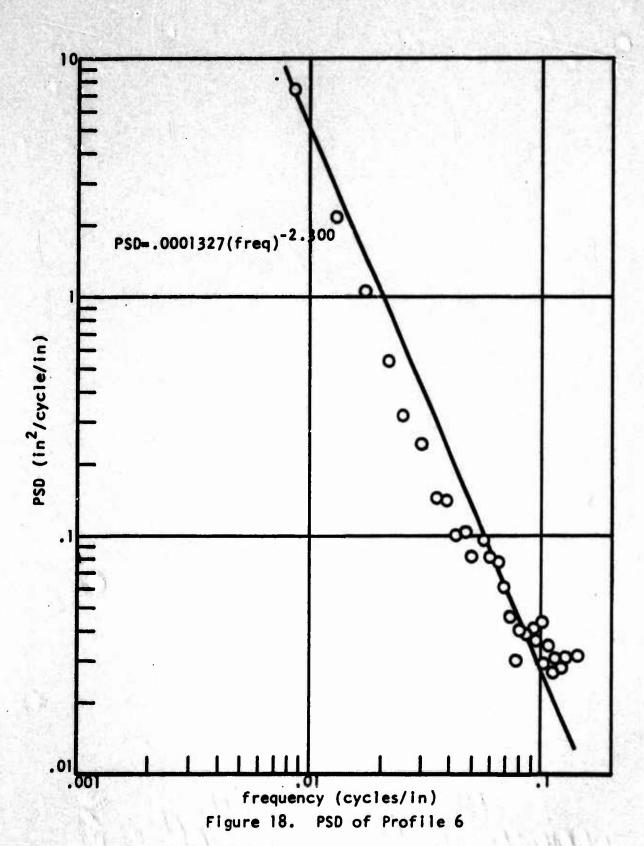




Figure 16. PSD of Profile 4

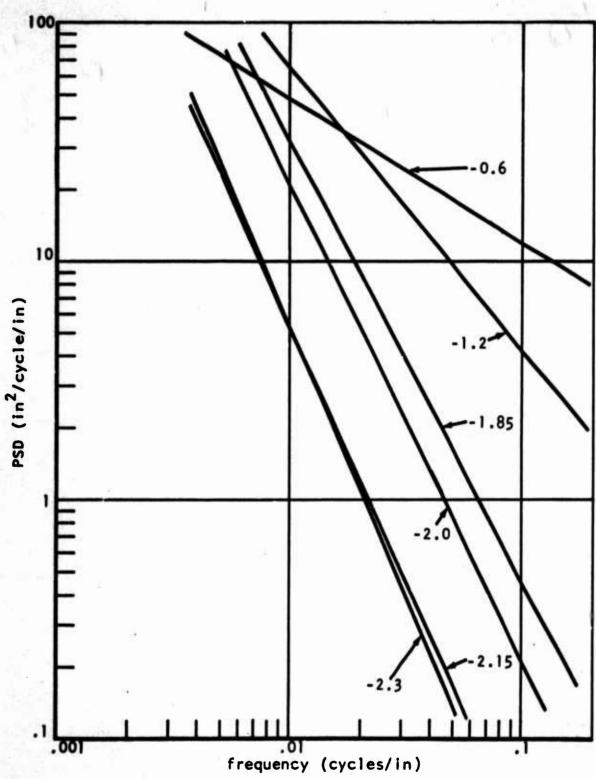


Figure 19. Comparison of PSD Curves

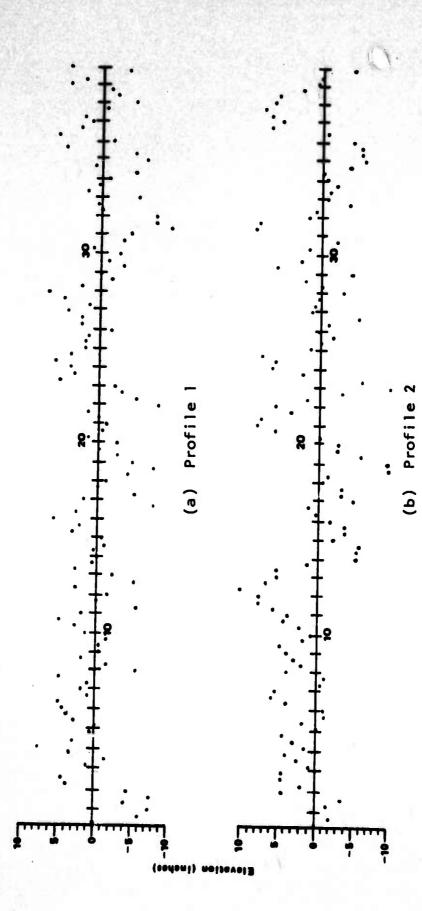


Figure 20. Section of Profiles 1 and 2 (NOTE: horizontal scale in feet)

I

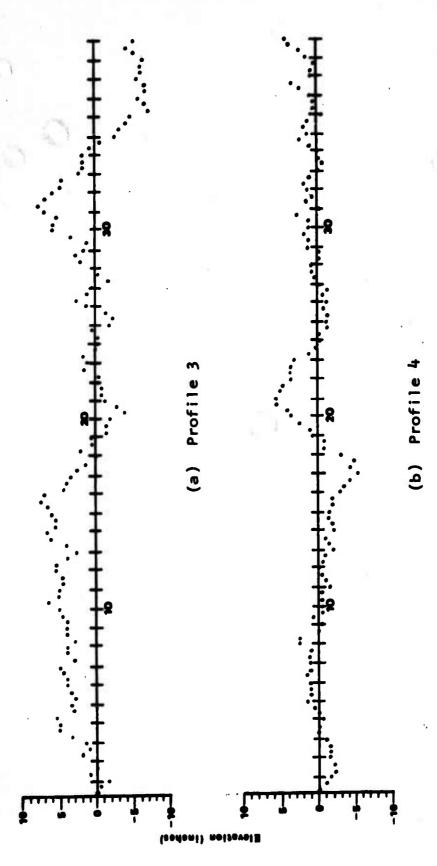
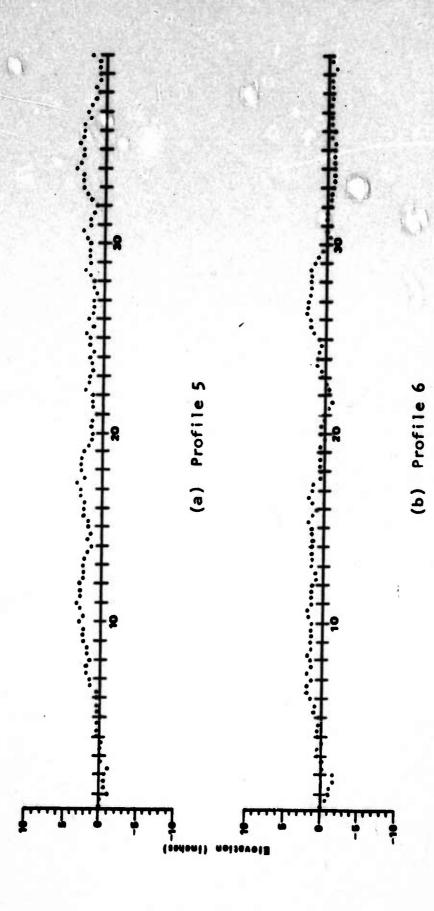


Figure 21. Section of Profiles 3 and 4 (NOTE: horizontal scale in feet)

1

1


O

0

0

Section of Profiles 5 and 6 horizontal scale in feet)

Figure 22. (NOTE:

N

11

0

8

U

0

0

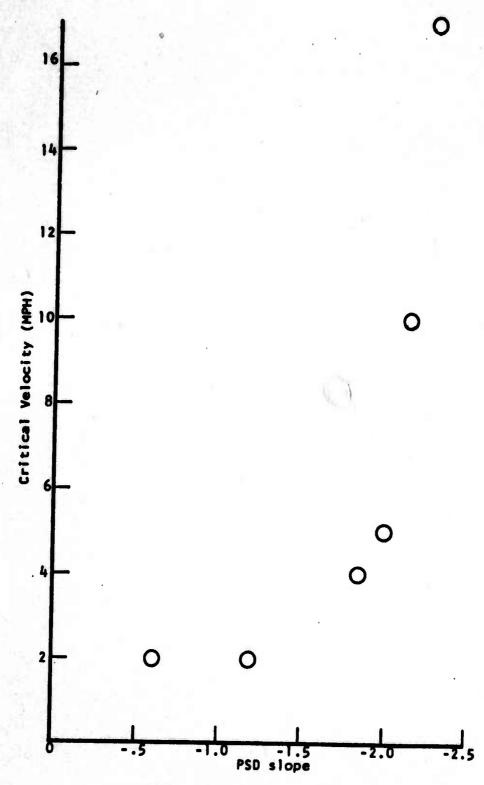


Figure 23. Results of M151 Critical Velocity Tests

however, the absorbed power jumped up sharply. To determine what may have happened, the HI51 was exercised over one entire terrain (slope of -2.3) at a velocity of eleven miles per hour. The absorbed power was plotted using a special computer program, PWRPLT (see Appendix D). For this execution the absorbed power leveled off at a value of 5.3 watts after about 18 seconds of ital time, as compared to where it began to level off at 3.4 watts around 6 seconds. Thus, the critical speeds determined for the HI51 indicate the sensitivity of the simulation but can be assumed to be about 50 percent too high.

Since it took four or five runs to find each critical speed, it was determined that to continue the "critical speed" approach would increase the cost of the program by a factor of from 3 to 5. Since the necessary funds were not available, a slightly different approach was taken.

First, each vehicle was exercised over each terrain profile at 5 mph and at 18 mph. These two speeds are near the relative minimum and maximum of off-road mobility expectations and should exercise each vehicle in most of its tolerance range.

Second, instead of measuring discrete absorbed power values, a new subprogram, AVERAGE was written to compute a running average and PWRPLT was used to plot the average absorbed power.

Each vehicle-profile combination underwent a 15-20 second simulation. The final average absorbed power was used to determine simulation sensitivity to the PSD slope of the input terrain profile.

The results are given in Figures 24 and 25.

Unfortunately, at both 5 mph and 18 mph on the terrains with PSD slopes of -0.6 and -1.2, both vehicles exhibited large pitch variations. Since a small pitch angle approximation was used to derive the vehicle simulation, all data on those profiles was considered invalid and is not included in the analysis.

There is no scientific reason to draw a straight line between the two points at each slope. In fact, according to Murphy's data, the lines should probably be concave downward (second derivative of the power with respect to slope negative). The lines are drawn simply to enhance visual comparison. Even a hasty inspection makes one thing obvious — the vehicle model is extremely sensitive to the PSD slope of the terrain profile input. Of significant interest is the sensitivity in the region from -2.0 to -2.15, since many natural terrains fall into this region. The overlapping of the lower two lines is probably due to statistical scatter in the profile generation process.

I

0

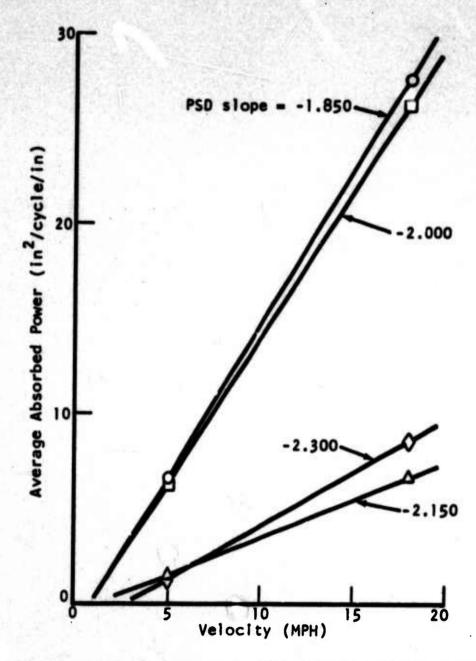
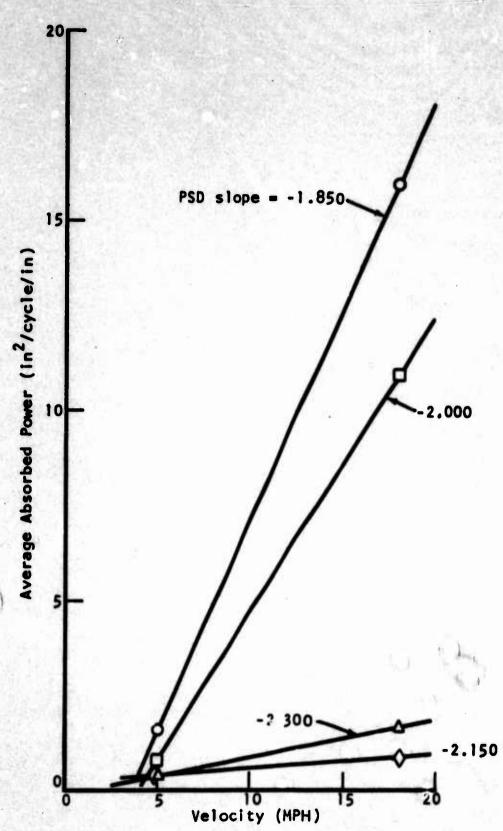
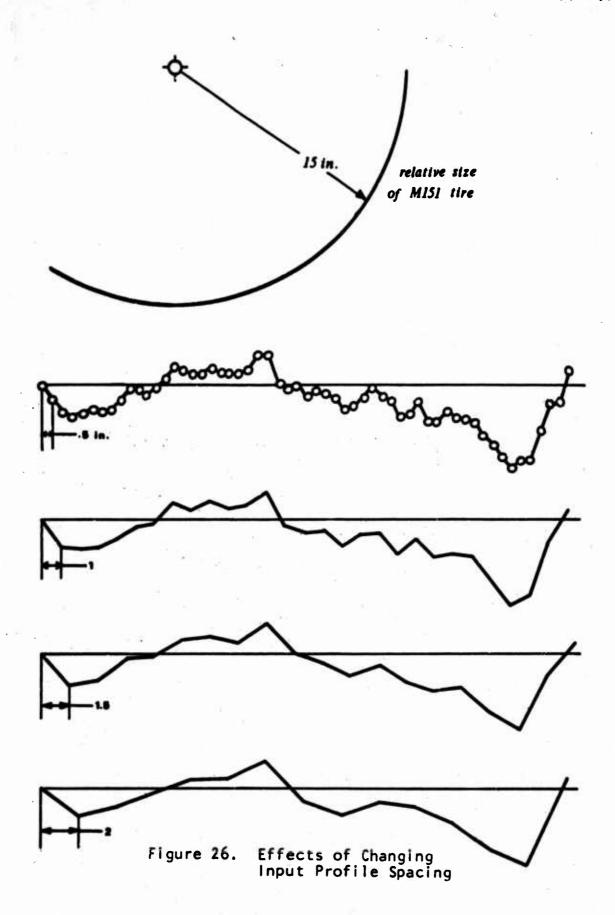
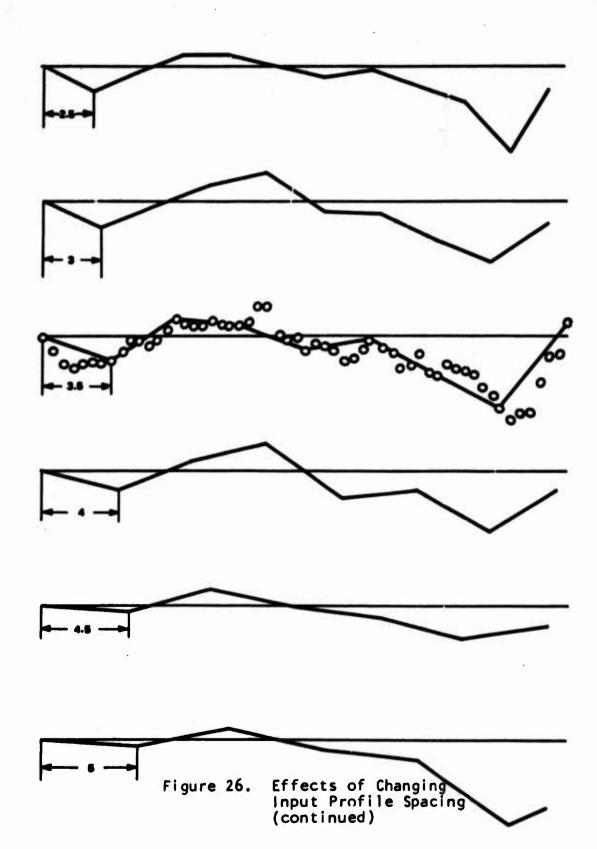


Figure 24. Results of M151 Average Absorbed Power Tests

Û


Figure 25. Results of M35 Average Absorbed Power Tests

II. The second objective of this research was to study the sensitivity of the simulation to changes in profile spacing. One random profile was created using NOIPSD with a profile spacing of 0.5 inch. One may think of this profile as constant, as if it existed in Nature somewhere. As the profile spacing (measurement interval) is changed, the profile itself will not be altered. What will change is the distance between points which are used as input to the vehicle simulation. The first few feet are shown in Figure 26(a). Since straight lines are used to interpolate between point, in the vehicle simulation, they are drawn between them in the figure. If a one inch interval is desired, every other point is "read" by the computer and the result is a profile as in Figure 26 (b). The measurement interval is increased by .5 inch increments in Figures 26 (b-j). Note that as the measurement interval increases, the profile appears to become smoother as the valleys are bridged and the peaks a strength by the linear interpolation scheme. The 1/2-inch-interval points are repeated in Figure 26 (g) for comparison. Note how the first valley has been gradually disappearing and the peak is completely flat.

For this test, an RMS elevation of 1.0 inch was chosen in order to depict a more natural terrain. A PSD of slope -1.850 was specified to keep away from the 2.000-2.150 instability region. The desired profile was obtained from NOIPSD, stipulating NG = 7, N = 1800, RMS = 1.0 and x = .046 in the input phase. The final PSD equation was PSD = .001134 (freq)^{-1.850} (see Figure 27).

G

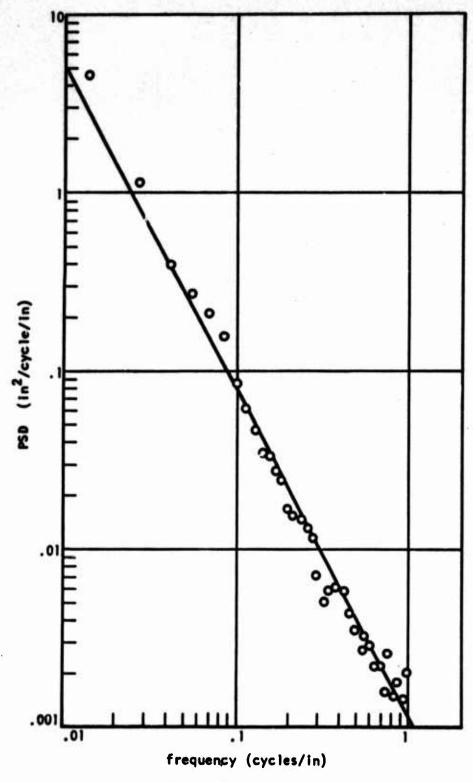


Figure 27. PSD of Profile Used for Measurement Interval Tests

Each vehicle simulation was then exercised over the profile at different measurement intervals. Velocity was maintained at ten miles per hour. The simulation was exercised until a steady-state absorbed power level was reached and the average absorbed power was used to compare results. Table 4 and Figure 28 show the results.

Note that the average absorbed power for the M35 maintains an essentially constant level throughout the tested range of measurement interval. In fact, at sixteen inches, the tire model consists of only one vertical spring -- a "point follower." Thus it appears that for the M35 truck and probably for other heavy, long-wheelbase trucks, a "point follower" tire model is sufficient.

For the M151 Jeep, however, the plot shows a steady decrease in average absorbed power, after about 2.5 or 3.0 inches. For the M151 and probably for all short-wheelbase, small-tired vehicles, it is obvious that a smaller measurement interval is required to provide numerically stable absorbed power values. The data indicate that an interval of as low as 2.5 inches is necessary. For profiles with higher RMS elevations, the interval may be even smaller.

Table 4

Measurement	Average Absorbed		
(Inches)	(wet <u>M151</u>	ts) <u>M35</u>	
1.0	7.206	1.328	
1.5	7.000	1.207	
2.0	7.221	1.298	
2.5	6.740	1.276	
3.0	7.819	1.377	
3.5	6.085	1.234	
4.0	8.734	1.318	
4.5	7.129	1.404	
5.0	5.094	1.254	
6.0	6.236	1.186	
9.0	4.329	1.082	
12.0	4.256	1.016	
16.0	•	1.321	

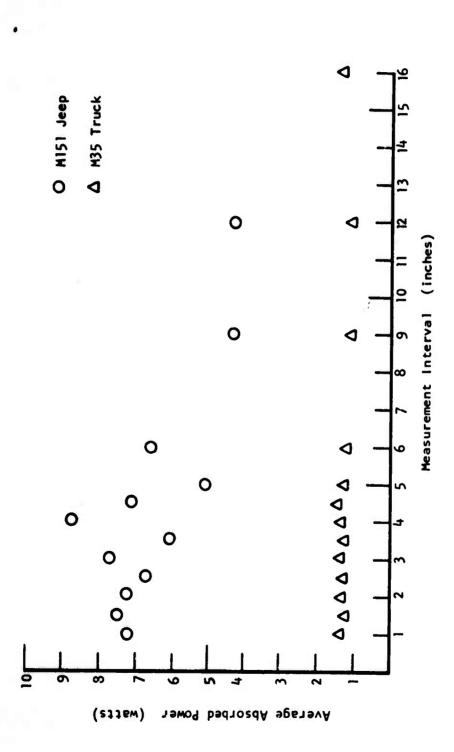


Figure 28. Results of Profile Spacing Variation on Average Absorbed Power

CONCLUSIONS

- 1. The vehicle simulation is extremely sensitive to PSD slope, especially in the neighborhood of -2.0.
- The vehicle simulation is sensitive to input profile spacing for light, short vehicles. A very small measurement interval of from
 to 3 inches is necessary for numerically stable average absorbed power values.
- 3. The vehicle simulation is relatively insensitive to variations in measurement interval for heavy, large vehicles. Thus a much longer measurement interval is possible and a vastly simpler tire model can be used.

RECOMMENDATIONS

- 1. That the sensitivity of the model be further tested using terrains differing in PSD slope by much smaller increments between -1.85 (or even -1.70) and -2.30.
- 2. That the M35 simulation be further tested for sensitivity over terrain profiles with greater RMS elevations and different slopes.

REFERENCES

Footnoted:

- Murphy, N. R., Jr., "Dynamics of Wheeled Vehicles, Report 3, A Statistical Analysis of Terrain-Vehicle-Speed Systems," Waterways Experiment Station, Vicksburg, Miss., April 1971.
- Van Deusen, B. D., "A Study of the Vehicle Ride Dynamics Aspect of Ground Mobility, Vol. I, Summary" WES Contract Report No. 3-114, Detroit, Michigan, March 1965.
- 3. Lee, R. A. and Pradko, F., "Analytical Analysis of Human Vibration," SAE Paper 680091, 1968.
- 4. Pradko, F., Lee, R. A., and Greene, J. D., "Human Vibration Response Theory," ASME paper 65-WA/HUF-19, New York, 1965.
- 5. Kozin, F., Cote, L. J., Bogdanoff, J. L., "Statistical Studies of Stable Ground Roughness," USATAC Report No. 8391 (LL 95), Warren, Mich., November 1963.
- 6. Van Deusen, B. D., "A Statistical Technique for the Dynamic Analysis of Vehicles Traversing Rough Yielding and Non-Yielding Surfaces," NASA Contractor Report No. 659, Detroit, Mich., March 1967.
- 7. Blackman, R. B. and Tukey, J. W., "The Measurement of Power Spectra," Dover Publications Inc., New York, 1958.
- 8. "Ordnance Corps Equipment Data Sheets, TM 9-500," HQ, DA, Sept. 1962.

General:

- Greenwood, D. T., <u>Principles of Dynamics</u>, Prentice-Hall, New Jersey, 1965.
- Grether, W. F., "Vibration and Human Performance," <u>Human</u>
 <u>Factors</u>, John Hopkins Press, Maryland, 1971.
- Holland, C. L., Jr., "Performance Effects of Long-Term Random Vertical Vibration," <u>Human Factors</u>, John Hopkins Press, Maryland, 1971.

- Holland, C. L. Jr., Cote, L. J. and Bogdanoff, J. L., "Some Aspects of Human Response to Random Vibration," USATAC Report No. 9010 (LL 105), Warren, Michigan, August 1965.
- Lee, R. A. and King, A. I., "Visual Vibration Response," ASME Paper 70-BHF-16, New York, 1970.
- Lessem, A. S., "Dynamics of Wheeled Vehicles, Report 1, A Mathematical Model for the Traversal of Rigid Obstacles by a Pneumatic Tire," USAEWES, CE, Vicksburg, Miss., May 1968.
- Lessem, A. S. and Murphy, N. R., Jr., 'Studies of the Dynamics of Tracked Vehicles," USAEWES, Vicksburg, Miss., 1971.
- McClellan, D. M., "Ride Response of a Model Vehicle to Harmonic Inputs," Report SIT-DL-71-1532, Stevens Institute of Technology, New Jersey, May 1971.
- Shoenberger, R. W. and Harris, C. S., "Psychophysical Assessment of Whole-Body Vibration," <u>Human Factors</u>, John Hopkins Press, Maryland, 1971.
- Timoshenko, S. and Young, D. H., <u>Vibration Problems in Engineering</u>, D. Van Nostrand Co., New Jersey, 1956.

APPENDIX A(Documentation of NOIPSD)

!. DESCRIPTION: This program is a combination of Murphy's two programs
NOISE1 and PSD. It first generates, using Gaussian noise, a random
terrain profile with zero mean and specified RMS elevation.

II. INPUTS AND OPERATING INSTRUCTIONS:

A. Prior to execution:

- The equation FLAG = 6*N/(TAU*62) is written assuming
 equivalent degrees of freedom. It comes from Blackman and Tukey, sections B.23 and B.24.
- The PSD estimates are smoothed by hamming. If other smoothing is desired, the appropriate parts of the program must be changed.

B. During execution:

- NG: May be any number, but to insure differences among profiles, a prime number should be used.
- 2. SHORT TYPE OUT: Answer YES or NO.
 - a. YES causes a reduction in program options, setting TAU = 4.0, RMS = 4.0, N= 1200, and no output files are created.
 - b. NO causes the program to run normally, with all options open.
- 3. In put of TAU, N, and RMS: If no new values are entered, the program will set them to 4.0, 1200, and 4.0 respectively.

- 4. ALPHA: This is the parameter used to adjust the slope of the PSD curve.
- 5. FILES? Answer YES or NO.
 - a. YES causes the program to ask for file names, which are entered if required. If no entry is made for either, that file will not be opened.
 - b. NO causes no files to be created.
- 6. FLOW = : Enter the desired low cut-off frequency. If zero is entered, the program will set FLOW equal to .0002, which normally causes only the zero frequency estimate to be deleted.

III. OUTPUTS:

A. PSD file:

- PSD equation in the form: PSD = C(freq)ⁿ,
 where C is the intercept at frequency = 1.0 on the log-log curve. With PSD on the vertical axis, n is the slope of the curve == a straight line.
- 2. RMS: This is the <u>actual</u> RMS as opposed to the desired RMS.
- 3. Power: The area under the PSD curve.
- 4. Number of Points: Number of points in profile.
- 5. Cut-off frequencies, low and high.
- Points that were used in the square fit by sequence numbers.
- List of frequencies and PSD estimates, five points to a line. Only the points used in the square fit are listed.

- 8. List of the points not used in the square fit.
- 8. Road file: Usea as input to VEH.
 - 1. The profile segment spacing in inches.
 - 2. A line of identifying information.
 - 3. The profile points in order, ten points per line.
- C. Teletype:
 - 1. RMS.
 - PSD equation. (If short type out is selected, only the slope of the PSD curve is printed out; none of the following are listed)
 - RMS, power, and number of points fitted by the above equation.
 - 4. SD. (Standard deviation of the points from zero)
 - 5. XBARAS: Hean of the profile after shift.
 - File names for output data. (If ----.DAT is typed out, no file was created.)

IV. SAMPLE EXECUTION:

A. Normel:

.EXECUTE NOIPSD LOADING

LOADER 9K CORE EXECUTION

NG = 7

SHORT TYPE OUT? NO

TAU=4.0, N=1200, R MS=4.0 UNLESS SPECIFIED NOW:
ALPHA = .0052
LLAG = 30
FILES? YES
PSD FILE NAME: PSD4
ROAD FILE NAME: ROAD4
AUTO-COVAR. IS COMPUTED
RMS = 4.000000
PSD IS FINISHED
FLOW = .0002

-2.000

PSD = 0.2067366E-02 FREQ

RMS = 4.000000

POWER = 3.673574

EQN FITS PTS 2 THRU 30

SD = 0.6519456

XBARAS = 0.0000000

FILE FOR PSD PLOT: PSD4 .DAT

FILE FOR ROAD PLOT: ROAD4.DAT

EXECUTION TIME: 11.73 SEC.

TOTAL ELAPSED TIME: 2 MIN. 3.37 SEC.

NO EXECUTION ERRORS DETECTED

EXIT

B. Abbreviated:

.EXECUTE NOIPSD LOADING

LOADER 9K CORE EXECUTION

NG = 7

SHORT TYPE OUT? YES ALPHA = .0052

SLOPE=-2.000

EXECUTION TIME: 6.40 SEC. TOTAL ELAPSED TIME: 24.75 SEC. NO EXECUTION ERRORS DETECTED

· EXIT

V. PROGRAM LISTING:

819		#IMENSION X(1200), DX(1200), FREQ(25°) DIMENSION RX(250), PX(250), SPX(250)
020 230		COMMON SD
840		WRITE(6,900'
050	987	FORMAT(! NG = !.S)
969		ACCEPT 997.NG
270		TAUBO.
989		Neφ
999	<u> </u>	RM 40.
100		WR1 "(6 901)
110	901	FORMATA: SHORT TYPE OUT? 1.5)
120		ACCEPT 996, OPTYPE
130		IF (UPTYPE .EQ. !YES!) GO TO 140
140		WRITE(6,902)
156	982	FORMATC' TAUE4.0.N=1200.RMS=4.0 UNLESS!
162	•	' SPECIFIED NOWI', S)
178_		ACCEPT 903. TAU.N.RMS
187	903	FORMAT(F, I, F)
198	142	IF(TAU.EQ.M.) TAU#4.8 IF(RMS.EQ.0.) RMS#4.0
210		IF (N.EQ.0) N=1200
220		GO TO 160
230	150	WRITE(6.907)
240	987	FORMAT('+ALPHA = ',S)
250		ACCEPT 998, ALPHA
267		IF (ALPHA, EQ.U.) GO TO 150
279	C	
288	170	FHIGH#1./(2.+TAU)
290		FLAGE6. +N/(TAU+62.)
360		LLAG=IFIX(FLAG+.5)
310	 	LAGELLAG-1
320		IF (OPTYPE . EQ. 'YES') GO TO 190
330	0/10	WRITE(6.90B) LLAG
349	90A	FORMAT('+LLAG =', [4,/)
350	187	FORMAT(!+FILES? !,\$)
360 370	909	ACCEPT 996.OPFIL
383		IF(OPFIL, EO, 'NO') GO TO 190
390		MRITE(6.913)
400	916	FORMAT(!+PSD FILE NAME: 1,5)
410	710	ACCEPT 996, FN1
420		IF (FH1.NE.' ') CALL OF ILE (21, FN1)
432		WRITE(6,911)
440	911	FORMAT(+ROAD FILE NAME: 1,5)
450		ACCEPT 996, FN2
469		IF(FN2.NE, ' ') CALL OFILE(22, FN2)
478		GO 10 208

480	199	FN1=' '
498	6	SIGMAN AND ST. DEV. ARE COMPUTED
500 510	200	SIGMAN=RMS+SORT(1EXP(-2.+AIPHA+TAU))
52 F	200	AA=EXP(-ALPHA+TAU)
530		SD=SIGMAN+SIGMAN
540	C ****	DISPLACEMENTS ARE OBTAINED
550	C	FROM GAUSSIAN RANDOM NUMBERS
56A		SUM#0.
578		ΠX(N)=0.
580		NN=N-1
590		SUM1=0.
600		00 210 I=1.NN
610		CALL GAURNU (V. NG)
429	24.0	DX(1)=V
630	210	SUM=SUM+DX(I)
64P		XBAR=SUM/NN DO 220 I=1,NN
669		PX(1)=DX(1)-XBAR
679	229	SUM1 = SUM1 + DX(I)
680		XBARAS=SUM1/NN
690		FACT=1.
700		YER.
717		X(1)=0.
727		00 230 1=2.N
730	230	X([)=DX([)+X([-1)+AA
740		RMS IS COMPUTED AND ADJUSTED
75P	C ****	TO DESTRED LEVEL
767 779	240	SUMX2=0. DO 250 [=1,N
789		X(1)=FACT+X(1)
790	257	SUMX2*SUMX2+X(1)*X(1)
800		ARMS=SORT (SUMX2/N)
810		FACT=RHS/ARMS
820		Y=Y+1.
832		1F'Y.E0.1.) GO TO 240
840	C ****	AUTO-COVARIANCE COMPUTATION
859	268	MPOINT=N
860		DO 280 1=1, LLAG
870		\$X=2.
889		Maj-1 Mx=NPOINT-M
898		
917		FNX=FLOAT(NX) DO 270 J=1,NX
920		Kaw+1
930	273	SX=SX+X(J)+X(K)
940	287	RX(I) #SX/FNX
950		RMS#SQRT(RX(1))
960		IF (OPTYPE NE . 'YES') WRITE (6,912) RMS
970	912	FORMAT('+ AUTO-COVAR. IS COMPUTED '/. 1X.
		!RMS = ',G18.7/)

9989	C	POWER SPECTRAL DENSITY COMPUTATION
8999		P1=3,14159265
1900		VV=PI/LAG
1010		V=2. +TAU/PI
1020		DELF=1/(2*LAG*TAU)
1030		RX(1)=,5*RX(1)
1846		RX(LLAG)=,5+RX(LLAG)
1050		00 300 IH=1,LLAG
1860		SC=7.
1070		00 290 IP=1,LLAG
1989		(I=(]4-1)+(]P-1)+VV
1999	297	SC=SC+RX(IP)+COS(U)
1100		PX([H)=W+SC
1110	300	FRFG(1H)=(1H-1)+DELF
1128		SPX(1)=,54+PX(1)+,46+PX(2)
1130		SPX(LLAG)=,54+PX(LLAG)+,46+PX(LLAG+1)
1140		KK=LLAG-1
1150		IF(SPX(1).LT.0.) SPX(1)=0,
1160		10 310 J=2.KK
1179		SPX(J) = ,54*PX(J) + ,23*(PX(J+1)*PX(J+1))
1180	319	1F(SPX(J),LT.p.) SPX(J)=0.
1190	047	IF (OPTYPE, NE. 'YES') WRITE (6,913)
1265	913	FORMAT('+PSD IS FINISHED'/)
1219	C ****	
1226.		FLON=0.
1234		NF=LLAG
1250		IF (OPTYPE, NE, 'YES') WRITE (6, 914)
1268	914	FORMAT('+FLOW = ',\$)
1278		IF (OPTYPE, NE, 'YES') ACCEPT 998, FLOW
1280		IF (FLOW, EQ. W.) FLOW= . RAW2
1298		DO 320 I=1.LLAG
1300		IF (FREQ(I).LT.FLOW) NS=NS+1
1310	320	IF (FPEO(1).GT.FHIGH) NF=NF-1
1327		RX(1)=0.
1330		PX(1) = ALOG10(SPX(1))
1340		NP=NF-NS
1350		!!S=NS+1
1367		no 340 I=NS,NF
1376		IF (SPX(1), LT., 2000005) GO TO 332
1380		PX(I)=ALOG10(FREO(I)) PX(I)=ALOG10(SPX(I))
1392	, <u>, , , , , , , , , , , , , , , , , , </u>	
1412	332	PX(I)=C
1427		RX(1)=P,
1432		!P=NP=1
1447	347	CONTINUE
- '		

1458	C ****	
1460		SUMY=0.
1478		SUMX=0.
1489		SUHXY##.
1490		SUMX2=0.
1500		00 350 1=NS,NF
1510		SUMY=SUMY+PX(I)
1520		SUMX=SUMX+RX(I)
1530		SUMXY#SUMXY+(PX(I)*RX(I))
1540		SUMX2=SUMX2+(RX(I)++2.)
1552	353	CONTINUE
1560		PE=NP+SUMX2-SUMX+SUMX
1570		AME (NP+SUMXY-SUMX+SUMY)/DE
1580		B= (SUMX2*SUMY-SUMX*SUMXY)/DE
1590		P=10.00R
1680	C ****	
1617	•	PSUM=0.
1628		DO 360 I=1,LLAG
1632	369	PSUM=PSUM+SPX(1)+DELF
1642	C ****	THE DATA IS NOW OUTPUT TO FILES
1650	C ****	AND TTY AS DESIRED
1660		IF (OPTYPE, EQ. 'YES') WRITE (6,915) AM
1672	915	FORMAT(! SLOPE= 1.F6.3/)
1687		IF (OPTYPE, NE, 'YES') WRITE (6,916) AM, B, ARMS,
1690	8	PSUM.NS.NF
1700	916	FORMAT(27X, F6, 3, /' PSD =',
1710		G, ' FREQ'//, ' RMS = ', G, /' POWER = ', G/,
1720	•	' EQN FITS PTS', 14. ' THRU', 14)
1730	_	IF (FM1.EQ. ! !) GO TO 480
1740		WRITE(21,920) AM, B. PSUM, FLOW, FHIGH, NS, NF
1750	927	FORMAT(45X' **** POWER SPECTRAL'
1760	•	" DEMSITY EQUATION *****/
1770		45X, 1 +1,41X,1+1/
1780	•	45x,' *',31x,F6,3,4x,'*'/
1790	•	45x, ' +',5x, 'PSD = ',G, ' FREQ ',8X, '+'/
1900	•	45x,' *',41x,'*'/,
1817	<u> </u>	45x, 1 ***********************************
1820	•	1000000000000000001//,
1830		61X, 'POWER = 1, F10.4,/
1849	•	50x, CUTOFF FREQUENCIES! 1./
1850	•	50Y, 1.0W 1,F10.8./
1967	•	50X, HIGH 1, F10, 8,/
1870	•	50x, 'EON FITS POINTS', 14, ' THRU', 14, //)
1860		WRITE(21,921)
1890	921	FORMAT(THE FOLLOWING POINTS WERE USED!
1983	•	' IN THE SO FIT!'/)
1919		MS*NS-1
1920		WRITE(21,922) ((FREQ(K), SPX(K)), KENS, NF)
1930	922	FORMAT(5(F18.8,F8.3)/)

1040		ME mh CA4
1940		WRITE(21,924)
1968	924	FORMAT(/// THE FOLLOWING POINTS WERE
1970	75.	' NOT FITTED: '/)
1980		IF(NS.EU.1) GO TO 410
1990		WRITE(21,922) ((FREQ(K), SPX(K)), K=1, NS=1)
2000		CO TO 420
2010	417	WRITE(21,925)
2020	925	FORMATI' NO LOWER FREQUENCIES WERE DELETED ! /)
2030	427	IF (NF, EQ, LLAG) GO TO 460
2040		WRITE(21, 922) ((FREQ(K), SPX(K)), K=MF, LLAG)
2050		GO TO 470
2060	467	WRITE(21,926)
2878	926	FORMATICAL NO HIGHER FREQUENCIES
		NERE DELETED'//)
2080	476	CONTINUE
2090	C ****	
2100	480	
2110		IF(FN2.EQ,' ') FN2='!
2120	 -	IF (OPTYPE, NE. 'YES') WRITE (6.927) SD.
2136	8	XBARAS, FN1, FN2
2148	927	FORMAT(SD = 1, F12.7, / 1 YBARAS = 1,
2150	•	F12.7./' FILE FOR PSD PLOTE ',A5,',DAT',/
2160	<u> </u>	FILE FOR ROAD PLOTE 'AS, 'DAT'/)
2170		IF(FN1.EQ,'') GO TO 490
2186	928	WRITE(21,928) ARMS, SD, XBAR, XBARAS, MG, N FORMAT(67X, 'RMS =',F12.7,/
2190	450	53X, STANDARD DEVIATION #1,F12.7./
2200	<u>_</u>	54X, 'X-BAR AFTER GAUSS =',F12.7./
2220	Ĭ	54X. 'X-BAR AFTER SHIFT = '.F12.7./
2230	-	45X, STARTING NUMBER FOR RAN(Z) =1.14./
2249	Š	55x, 'NUMBER OF POINTS =', 16)
2250	929	FORMAT(10F12.8)
2260	492	TF(F'2,E0,'') GO TO 9999
2270		WRITE (22,930) TAU, FN2, AM, NG, ALPHA, TAU, RMS
2287	937	FORMAT(1X,F/1X,A5,',DATSLOPE=',F6,3,
2297	+	' NG=1,12,' ALPHA=',F6.5,
2300	•	' TAUR', F3.1, ' RMS=', F3.1)
2310		DO 500 1=10.N,10
2320	502	WRITE(22,929) (X(K),K=1-9,1)
2330	9999	CALL EXIT
2348	996	FORMAT(A5)
2350	997	FORMAT(1)
2360	998	FORMAT(F)
2370	999	FORMAT(/)
2387		END
2390		
2400		

2418			4
2420		SUBROUTINE GAURND (V, NG)	
2420		COMMON SO .	· · · · · · · · · · · · · · · · · · ·
2448		V=0,	
2450		J=0	
2460		DO 100 1=1,NG	
2479	100	ASRAN(2)	
2480		no 110 l=1,12	
2490		A=RAN(Z)	,
2500	110	V#V+A	
2518		V=V=6,	
2520		V=V+SD	
2530		RETURN	

ij

1

İ

0

1

APPENDIX B(Documentation for VEH)

- DESCRIPTION: This program, in its original form, was also obtained from N. R. Murphy, VES. It is a non-linear, time-domain wheeled vehicle simulation on a digital computer, a PDP 10.
- II. INPUTS AND OPERATING INSTRUCTIONS:
 - A. Prior to execution: The vehicle constants must be entered in Subroutine DATA (see Appendix C) and the tire load-deflection curves must be on hand.
 - B. During execution:
 - 1. Name of input file (Road file created with NOIPSD).
 - Desired Delta-L: This should be a multiple of the input profile spacing.
 - 3. Name of vehicle to be simulated.
 - 4. Options. Answer YES or NO.
 - a. Absorbed Power.
 - b. Detailed output file?
 - (1) YES causes program to ask for file name, which should not be more than five characters long.
 - (2) NO causes program to skip the above question and no output file will be created.
 - c. Peak accelerations.
 - d. Driver motions (only asked if vehicle is a track)
 - e. RMS of all accelerations. (This must be answered
 YES if PWRPLT is to be used later to plot the

absorbed power.

- f. Tire deflections. The program will type out the loads on each axie, front to rear. Enter the deflection caused by each load on a single tire.
- 5. Vehicle velocity in miles per hour.
- 6. Teletype printout time interval in seconds.
- 7. Time and absorbed power only? Anser YES or NO.
 - a. YES causes the program to type out only time, absorbed power, and average absorbed power for each interval.
 - b. NO will cause the normal printout format to be used.
- 8. Stop? Answer YES or NO. Program will stop on entry of YES.
- iii. OUTPUTS: These depend on the options selected. Assuming all are desired, the outputs will be as follows:
 - A. To detailed file:
 - 1. List of THRESH and GAMMA.
 - 2. Vehicle velocity in MPH and inches per second.
 - 3. Delta-L.
 - 4. Delta-t.
 - 5. Number of steps in RKG integration.
 - 6. RKG step size.
 - 7. The input profile identification.
 - Time, profile input point, average power, absorbed power, and vehicle motions at each step.

B. To teletype: Basically the same information as above is printed out on the teletype, except that the time, input point, etc. are printed out only according to the teletype print-out interval specified earlier.

IV. SAMPLE EXECUTION:

IV. SAMPLE EXECUTION:

A. Normal:

.EXECUTE VEH FORTRAN: VEH LOADING

LOADER 9K CORE EXECUTION

FILE NAME OF INPUT PROFILE: ROADX DESIRED DELTAL: 1. NAME OF VEHICLE? M151

DO YOU WANT THE FOLLOWING OPTIONS?

ABSORBED POWER? YES
A DETAILED OUTPUT FILE? YES
FILE NAME: FILEX
PEAK ACCELERATIONS? NO
RMS OF ALL ACCELS? YES

FROM FORCE-DEFL CURVES FOR M-151 JEEP TIRES, ENTER DEFLECTIONS: LOAD = 581.071 .82 LOAD = 623.249 .865

VEHICLE VELOCITY IN MPH: 10.0 TTY PRINTOUT TIME INTERVAL: .2

TIME & POWER TYPEOUT ONLY? NO

VELOCITY=10.00 MPH (176.00 IPS)

DELTA-L=1.000 DELTA-1=0.0057

NSTEPS= 5 H=.001136

VEHICLE IS: M-151 JEEP

INPUT PROFILE IS:
ROADX.DAT--FILE FOR VARIABLE MEASUREMENT INTERVALS

A. Normal: (continued)

	D	ISPL	VELOC	HCCEL	RMSA	C	
TIME=	0.000	INPUT=	0.000	ABSORBED	POWER=	0.000	0.000
C-G PITCH	-1.1		.00000	2.80000 8.00000	0.0000 0.0000		
AXLEI	-2.8		.00000	2.00000	0.0000		
AXLE2	-0.8		.00000	0.00000	0.0000		
STOP?		77.5.2					
TIME=	0.205	INPUT=	-0.209	ABSORBED	POWER=	0.140	0.041
C-G	-1.22	2561 -3	.25482	-0.21239	0.1556	2	
PITCH	-0.00		.13723		2.1322		
AXLEI	-1.0		.41071		0.4597		•
AXLE2	-0.8	SØ37 1	.79340	0.04520	0.0960	9	
STOP?	NO						
60.7 1409 .		T 1151199-	0.540	: D. G. A. D. ST. D.	DALLES.		
TIME=	0.403	INPUT=	-0.549	ABSORBED	POWER=	0.515	0.231
C-G	-1.09	423 -1	.51579	3.12303	0.2303	8	
PITCH			.05403	2.84386	3.3489		
	-0.72		.32713	0.13655	0.6575		
AXLE2	-0.86	0245 Ø	.23447	-0.15274	0.1238	2	
STOP?	YES						
EVECIIT	ATT MOT	AF •	20	27 SEC			

EXECUTION TIME: 29.27 SEC. TOTAL ELAPSED TIME: 3 MIN. 57.30 SEC. NO EXECUTION ERRORS DETECTED

EXIT

B. Abbreviated:

.EXECUTE VEH

LOADER 9K CORE EXECUTION

FILE NAME OF INPUT PROFILE: ROADX DESIRED DELTAL: 1.5
NAME OF VEHICLE? M151

DO YOU WANT THE FOLLOWING OPTIONS?

ABSORBED POWER? YES A DETAILED OUTPUT FILE? NO PEAK ACCELERATIONS? NO RMS OF ALL ACCELS? NO

FROM FORCE-DEFL CURVES FOR M-151 JEEP TIRES, ENTER DEFLECTIONS: LOAD = 581.071 .82 LOAD = 623.249 .865

VEHICLE VELOCITY IN MPH: 10.0 TTY PRINTOUT TIME INTERVAL: .1

TIME & POWER TYPEOUT ONLY? YES

TIME ABSPWR AVEPWR 0.00 0.00 0.00 0.10 0.05 0.01 0.20 0.19 0.04 0.31 0.73 0.18 0.78 3.40 0.30 0.50 0.61 0.38 0.88 0.61 0.43 0.71 0.75 3.50 0.80 0.89 0.52 0.64 0.90 1.84 STOP? YES

EXECUTION TIME: 39.78 SEC.
TOTAL ELAPSED TIME: 1 MIN. 57.87 SEC.
NO EXECUTION ERRORS DETECTED

V. PROGRAM LISTING:

910.	C	STORAGE ALLOCATIONS
656		TEI THE FOLLOWING COMMON STATEMENTS
030	<u> </u>	MUST APPEAR IN EACH SUBROUTINE
848	, ,	COMMON FORCH(6) FORCT(7) FORCK(6) FORCH(6)
650		COMMON SPDEF (6), DSPSF (6), THRESH (200), SIGMA (9)
968		COMMON VAR(18), Y(260), PHRVAR(9), DAMP(6)
979		COMMON ACCISS(9), ACCGS(9), ACCHAX(9), ACCHIN(9)
988		COMMON SUMRMS (9) . RMS (9) . LEN (18) . MASS (6)
999	250 14118	COMMON H.T. DELTAT, DELTAL, VELIPS, VELMPH, NSTEPS
100		COMMON YIN. DRVMAX. DRVMIN. ABSPHR, CAMMA (200)
110		COMMON DISDRY, VELDRY, ACCORY, RMSDRY
120		COMMON IFPWR, IFFILE, IFPACC, IFDRY, IFRMS
130		COMMON NY, IDF, NAXLES, NSEGS, IFHORE, FNAME
140		COMMON FMASS, INRTIA HORMOM, DRVLEN
150		COMMON VEHOLD(2), PROFIL(268), PASTP(268), INDEX
160		COMMON YY (3) METCHT (3)
170		COMMON SLIMIT (4,3), SSLOPE (5,3), SINT (5,3)
180		COMMON DLIMIT (2.3) DSLOPE (3.3) DINT (3.3)
190		DIMENSION DRIVER(4), IOPT(6), NYTEMP(3)
209		DIMENSION FID(12), XTNAME(4)
210	Y	DIMENSION FK(18), P(18), Q(18), PY(9), PHRFK(9)
229		DIMENSION PP(9),QQ(9)
230		REAL LEN, MASS, INRTIA
240	Jan 18	EQUIVALENCE (ISETUP, NY)
250	and the same	FOUIVALENCE (DRIVER(1), DISDRY)
269		EQUIVALENCE (10PT(1), 1FPWR)
270		DATA XTNAME/ 14151 1 14351 1 1 1 1/
280	- P	NOs IN I
290		1YES='Y'
300		1FSTOP='N'
312	C	
320	1887 - K	DO 100 I=1.9
330		PHRVAR(1)=0,
340		QQ(1)=Ø,
350		ACCISS(I)=0.
368	8.	SUHRMS(1)*0.
370		0(1)=0.
380		ACCHAX(1)=0,
390		ACCHIN(1)=0.
480	100	CONTINUE
410		ACCORV=0,
429		DO 110 [=1,18
430	110	VAR(1)=0,
448		7*0.
450		SDVRMS=0.
460		ABSPUR=0.
479		DRVMAX=0.
488	11 %	DRVHIN=0.
490		YINEC,
7,5		

500		H=.001
510		DELTAL=4.
52F		JSTOP=1
530		NSTOP=Ø
540		TPRINT=0.
550	C	OPEN INPUT FILE AND READ PROFILE
560	C	SPACING AND OTHER IDENTIFICATION
570	128.	WRITE(6,900)
589	900	FORMAT(FILE NAME OF INPUT PROFILE) (5)
590		READ(5,996) FN2
600	ANGLE NO. 1	IF (FN2.EQ,' ') GO TO 120
610		CALL IFILE(22, FN2)
620		CALL FILINIFID. JS, SPACING, 1)
630	C ****	VEHICLE CONSTANTS READ-IN
640	120	WRITE(6,902)
658	902	FORMAT(! + NAME OF VEHICLE? !, \$)
669	3	READ(5,996) TNAME
679		DO 130 I=1,4
689		IF (TNAME-XTNAME(1))130,140,130
690	130	CONTINUE
700	He is my way	WRITE(6,903) XTNAME
710	903	FORMAT(' THE AVAILABLE VEHICLES ARE:
720	•	4(2X,A5))
730	49.7	GO TO 120
740	140	GO TO (150,160,170,180) I
750	150	ASSIGN 400 TO ISUB
760		GO TO 190
770	168	ASSIGN 410 TO ISUB
780	30 to 1	GO TO 190
790	178	ASSIGN 420 TO ISUB
800		GO TO 190
818	180	ASSIGN 430 TO ISUB
820	197	CONTINUE
830	C ****	SELECTION OF OPTIONS
849		WRITE(6,904)
850	904	FORMAT(DO YOU WANT THE FOLLOWING)
868		OPTIONS?!//! ABSORBED POWER? '.S)
870		READ(5,995) IFPWR
880		WRITE(6,905)
898	985	FORMAT(!+ A DETAILED OUTPUT FILE? !, \$)
900	•	READ(5,995) IFFILE
910		IF (IFFILE, EQ. 'N') GO TO 210
929		WRITE(6,906)
930	906	FORMIT(+ FILE NAME: 1,5)
948		ACCEPT 996, FN1
950		CALL OFILE(21, FN1)
969	210	WRITE(6,907)
970	907	FORMAT(! + PEAK ACCELERATIONS? ', \$)
980		READ(5,995) IFPACC
990		IF(I.LT.3) GO TO 215

1000		WRITE(6,908)
1010	908	FORMAT(+DRIVER MOTIONS? 1.5)
1020		READ(5,995) IFDRV
1030		GO TO 216
1040	215	IFDRV='N'
1050	216	WRITE(6,909)
1969	989	FORMAT(+RMS OF ALL ACCELS? 1.5)
1070		READ(5,995) IFRMS
1080		CALL DATA(1)
1090	C	INITIALIZE PROFILE ARRAYS
1100		00 220 I=1.NY
1110		PASTP(I)=0.
1120		Y([)=0,
1130	229	PROFIL(I)=0,
1140		NYTEMP(1)=0.
1150		NYTEMP(2)=(LEN(1)+LEN(2)-LEN(3))/DELTAL
1168		NYTEMP(3)=(LFN(1)+LEN(2)+LEN(4))/DELTAL
1170		
1180	C ****	VEHICLE RUN VARIABLE INPUT
1190		WRITE(6,911)
1200	911	FORMAT(/' VEHICLE VELOCITY IN MPH: '.S)
1210		READ(5,998) VELMPH
1220	i l	WRITE(6,912)
1230	912	FORMAT('+TTY PRINTOUT TIME INTERVAL: ',5)
1240		READ(5,998) TIP
1250		WRITE(6,913)
1260	913	FORMAT(TIME & POWER TYPEOUT ONLY? 1,5)
1270	_	READ(5,995) OPTYPE
1280	C ****	TIME STEP AND RKG TIME SET-UP
1290		VELIPS=VELMPH+17.6
1300	ST - III have	DELTAT=DELTAL/VELIPS
1310		NSTEPS=DELTAT/H
1320		TEMP=NSTEPS H=DELTAT/TEMP
1330		OUTPUT SCALING
1340	230	00 240 [=1, IDF
1360	240	ACCGS(1)=ACCISS(1)/386.
	240	ACCGS(2)=ACCISS(2)
1370	C	ABSORBED POWER CALCULATION
1390		ABSPWR=0.
1400		IF(T.NE.0.) ABSPWR=-100.*PWRVAR(1)/T
1410	MON W	CALL AVERAGE (ABSPWR, AVEPWR)
1420		IF (IFDRY, EQ. 'N') GO TO 260
1430	315-311	DISDRY=VAR(1)+DRVLEN+VAR(2)
1440		VELDRY=VAR(IDF+1)+DRVLEN+VAR(IDF+2)
1450	C ****	RMS CALCULATION
1460	269	1F(1FRMS.EQ.'N') GO TO 280
7 7 U F		11.41.100.600.14. 00.10.500

H

1

4 4 3 6		00 074 1-1 105
1470		00 270 1=1.1DF
1480		SUHRMS(1)=SUMRMS(1)+ACCGS(1)++2
1490		RMS(1)=0.
1500	270	IF(T.NE.@.) RMS(1)=SQRT(SUMRMS(1)+DELTAT/T)
1510	289	IF(IFDRY, EO, 'N') GO TO 300
1529		SDVRMS=SDVRMS+ACCDRV++2
1530		RMSDRV=Ø.
1540		IF(T.NE.C.) RMSDRV=SQRT(SDVRMS+DELTAT/T)
1550	C ****	PEAK ACCELERATION CALCULATION
1560	302	IF(IFPACC, EQ. 'N') GO TO 320
1570	Ş1 5 1	NO 310 I=1, IDF
1589		ACCHAX(I)=AHAX1(ACCMAX(I),ACCGS(I))
1590	317	ACCMIN(I) = AMIN1(ACCMIN(I), ACCGS(I))
1600	320	IF(IFDRV.EQ.'N') GO TO 340
1610	Va I	DRVHAX=AMAX1 (DRVMAX, ACCDRY)
1620		DRVMIN=AMIN1(DRVMIN, ACCDRV)
1630	C ****	PROFILE INPUT
1640	349	CALL FILIN(FID, JSTOP, SPACING, 2)
1659		PROGRAM OUTPUT
1660	350	IF (IFFILE, EQ. 'Y') CALL FILWRT (FID, NPL,
1679	•	FN2, AVEPWR)
1687	•	IF(T.LT.TPRINT) GO TO 360
1699		CALL PRINT(FID, IFSTOP, OPTYPE, AVEPHR)
1700		TPRINT=TPRINT+TIP
1718		!F(!FSTOP,EQ.'Y') GO TO 512
1729	C ****	MAIN PROGRAM
1730	360	CALL SHIFT
1748	C ****	SHIFT ADVANCES THE Y PROFILE ARRAY
1750	0 00000	1F(JSTOP,EQ.2) GO TO 500
-		
1769		PROFIL(1)=YIN INDEX=-NSTEPS
1779		
1789		LDF=2+1DF
1797	370	DO 380 J=1. IDF
1800	222	K=J+IDF
1819	380	PY(J)=VAR(K)
1820		00 390 I=1.NY
1830	398	Y(1)=PASTP(1)+((INDEX+NSTEPS+1)+
1840	•	(PROFIL(I)-PASTP(I)))/NSTEPS
1850		no 440 1=1,4
1860		GO TO ISUB, (400,410,420,430)
1870	403	CALL WHEELS (FK. NYTEMP)
1886		GO TO 440
1890	418	CALL WHEELS(FK, NYTEMP)
1900		GO TO 440
1919	420	CALL M68(FK)
1920		GO TO 448
1930	437	CALL M113(FK)
1949	449	CALL RUNGE(P,Q,VAR,FK,LDF,1)
-		

1956		DO 450 1=1,1DF
1960		K=1+1DF
1978	450	ACCISS(I)=(VAR(K)-PY(I))/H
1760		ACCDRY=(ACCISS(1)+DRVLEN+ACCISS(2))/386, 300
1998	E The I want	IF (IFPWR.EQ.'N') GO TO 488
2000	-1	DO 476 1=1,4
2010	1. 1.21	CALL POWER(PWRFK)
2828	479	CALL RUNGE(PP, QQ, PWRVAR, F. RFK, P, 1)
2030	480	INDEX=INDEX+1
2040		IF (INDEX, NE. Ø) GO TO 370
2050		T=T+DELTAT
2068	Range Control	GO TO 230
2070	C	FINAL OUTPUT
2080	500	CALL PRINT(FID, IFSTOP, OPTYPE)
2090	510	IF (IFPACC, EQ. 'Y') CALL PEAKAC(NPL)
2100	995	FORMAT(A1)
2110	996	FORMAT(A5)
2120	997	FORMAT(1)
2130	998	FORMAT (F)
2140	999	FORMAT(/)
2150	9999	CALL EXIT waster
2160	Hamilton and	END
e th		The past of the pa

610	Stramt-	SUBROUTINE FILIN (FID. JS. SPACING, N).
020	C ****	THIS SUBROUTINE READS A NEW INPUT
636		VALUE (YIN). AND CHECKS FOR END OF FILE.
648	C	
959	55,000	DIMENSION FID(12)
969		DIMENSION FYIN(10)
976	111	DATA FYIN/10+0./
880		IF(N.LT.2) GO TO 130
090	100	IYEIY+MM
100	_117_	1F(1Y,GT,10) GO TO 120
118		YIN=FYIN(IY)
120		RETURN
130	120	READ(22,900) (FYIN(1),1=1,10)
148	900	FORMAT(10F)
150	assure 150 files	1F (EOFC) GO TO 9999
160		IY=IY-10
170	All and the second	GO TO 110
180	137	WRITE(6,901)
190	981	FORMAT('+ DESIRED DELTAL: ':5)
200		READ(5,998) DELTAL
210		READ(22,902) SPACING, (FID(1), 1:1,12),
220	•	(FYIN(J), J=1,10)
230	902	FORMAT (1X, F/1X, 12A5, /10F)
240	A Comment	MM=DELTAL/SPACING
250	10.7	1Y=0
268		RETURN
279	9999	JS=2
280		RETURN
290	998	FORMAT(F)
300		END
100		

010		SUBROUTINE RUNGE (P.Q.X.FK,M,N)
020	C	THIS SUBROUTINE IS THE RKG ALGORITHM.
030		DIMENSION P(1),Q(1),X(1),FK(1),A(4),B(4),G(4
048		DATA A/.5, .292893219,1.70710678, 16666667/
050		DATA 8/2.11.1.2./
969		DATA C/,5,.292893219,1.70710678,.5/
070		TA=A(N)
989	100	TB=8(N)
898		TC=C(N)
100		00 100 I=1,M
110		P(1)=TA+(FK(1)-TB+Q(1))
120		X(1)=X(1)+P(1)
138	100	Q(1)=Q(1)+3.+P(1)-TC+FK(1)
140		RETURN
150		END

610			SUBROUTINE DATA(N) THIS SUBROUTINE CONTAINS THE VEHICLE
020	_	****	PARAMETERS: IT ALSO CALLS GAMSUB
930	C 0	***	DIMENSION ISETUP(5) OSIGMA(9,4)
040			DIMENSION OVEHCL (2.4). DTHRSH (9.4). DGAMMA (9.4)
959	1000		
969			DIMENSION DMASS(6,4), DVAR(9,4), DLEN(10,4)
979			DIMENSION DEMASS(4) DINRTA(4) DDRVLN(4)
080			DIMENSION DSLIM(4,3,2),DSSLO(5,3,2)
990			DIMENSION DSINT(5,3,2)
100			DIMENSION ODLIM(2,3,2),DDSLO(3,3,2)
110			DIMENSION DDINT(3.3.2)
120			DIMENSION DR(2)
130			INTEGER DSETUP(5.4)
148			REAL LEN, MASS, INRTIA
150			FOUTVALENCE (ISETUP(1), NY)
160			DATA DVEHCL/10HM-151 JEEP, 10HM-35 TRUCK,
170		4	10HM-60 TANK, 10HM-113 TANK/
180	C +	1444	DSETUP'S ARE NY, IDF, NAXLES, NSEGS, IFHORE
190	U 11		
200		8	DATA DSETUP/0.4.2.0.0.0.5.3.0.0.
		6	50,9,6,5,1,36,8,5,5,1/
219		_	DATA DTHRSH/9+09+0
220		1	3.5,1.,0.,1.,3.5,4*0.,
239			3.2.9.09.3.2.4*0./
248			DATA DGAMMA/9+0.,9+0.,
250		1	3885.4715.5000.4715.3885.4*0.
260		1	1500.,2000.,3500.,2000.,1500.,4*0./
278			DATA DSIGMA/9+0.,9+0.
280		1	3145.,1670.,0,,-1670.,-3145.,4*0,,
290		_1_	150070007001500400./
300			DATA DLEN/44.3,40.7,8+0.,113.,39.,24.,24.,640
310		_ 1	77.44.11.,-22.,-55.,-88.,4+0.,
320		1	52,,24,,0,,-28,,-65,,5+0,/
338		_	DATA DMASS/.27,.27,4*0.,
340		1	1.191,2,08,2.05,3+0.,6+0.,6+0./
350		•	DATA DEMASS/2.58.18.8.0.4./
360			DATA DINRTA/3282.,90876.,0.,0./
370			DATA DDRVLN/002525./
380			DATA DVAR/9+09+0
		4	-5.79008996697.
300			942,913,884,856,0.,
400		. 1	
410		_1_	-3.75,0087,76,78,76,73,68,2*0./
420			DATA DSLIM/12+9994.4 -3.65.3.65.4.4.
430		_1_	-5.75.1.5.1.5.75.75.1.5.1.5.7/
440			DATA DSSL0/15+1500.,
450		_1_	11771,43,3333,33,1145,2,3333,33,11771,43,
460		1	46000.,9333.33,2509.8,9333.33,46000,,
470			46000, 9333, 33, 2509, 8, 9333, 33, 46000, /

480	JAN 93.		DATA DSINT/15+8.,
498		1	66714.3,7986.65,0.0,-7986.65,-66714.3,
500		1	243800.,34800.,0.034800243800
510	1 12 12 12 14 A 14		243870.,34800.,0.0,-34800.,-243800./
528			DATA DDLIM/4+999,,2+0.,
538		1 5	-0.6.0.60.6.0.60.6.0.6/
540			DATA DDSL0/9+42.,
550	GROW WOUTH	_1_	70.1402.40.0.1583.0.0.1583.0./
560			DATA DDINT/9+0,,
570			-800.0.820.,-950.,0.,950.,-950.,0.,950./
580			DATA DR/15.,19./
500	466	118	DO 178 I=1,2 VEHGID(I)=DVEHCL(I,N)
600	100		
410	V - 1		DO 110 I=1.5
620	110		ISETUP(I)=DSETUP(I,N)
630			DO 120 I=1.IDF
640	w.te.	p+1 1 1	LEN(1)=DLEN(1.N)
650	120		VAR(I)=DVAR(I,N)
660	470		DO 130 I=1, NAXLES
670	130		MASS(I)=DMASS(I,N)
686			FMASS#DFMASS(N)
690			INRTIA=DINRTA(N)
790			DRVLEN=DDRVLN(N)
710			IF(N.LE.2) GO TO 150
720	No extension		DO 140 I=1,NSEGS
730			THRESH(I)=DTHRSH(I,N)
748	4.4.5		SIGMA(I)=DSIGMA(I,N)
750	140		GAMMA(I)=DGAMMA(I,N)
760	480		REYURN
770	150	٠.	00 200 I=1, NAXLES
780	446		DO 168 J=1,4
798	160		SLIMIT(J,I)=DSLIM(J,I,N)
800			DO 170 J=1,5
810		7.5	SSLOPE(J, I)=DSSLO(J, I, N)
120	170		SINT(J,I)=DSINT(J,I,N)
830	400		DO 180 J=1,2
840	180		DLIMIT(J,I)=DDLIM(J,I,N)
850	,		DO 198 J=1,3
860	400		DSLOPE(J. I)=DDSLO(J. I. N)
870	198		DINT(J,I)=DDINT(J,I,N)
880	200		CONTINUE
890			R=DR(N)
988			CALL GAMSUB(N,R) DO 210 I=1,NAXLES
910			
920			VAR(1+2)=-YY(1)
930			WEIGHT(I)=WEIGHT(I)-MASS(I)+386.
940			IF (NAXLES.LT.3) GO TO 210
950			IF(I,LT,2) GO TO 210
960	04.5		WEIGHT(I)=2.*WEIGHT(I)
970	210		SPDEF(1)=-WEIGHT(1)/SSLOPE(3.1)

E980********	WB=LEN(1)+LEN(2)
8996	T1=VAR(3)+SPDEF(1)
1000	T2=VAR(4)+SPDEF(2)
1010	IF(N.LT.2) GO TO 220
1626	T3=VAR(5)+SPDEF(3)
1030	T2=(T2+LEN(4)+T3+LEN(3))/(LEN(3)+LEN(4))
1040 227	VAR(1)=(T1+LEN(2)+T2+LEN(1))/WB
1050	VAR(2)=(T2-T1)/HB
1068	WRITE(6,800) (VAR(1), [=1,10F)
1070 800	FORMAT(5F10,5)
1086	RETURN
1090	END

Û

B

	CSSSSS	
79	132	CONTINUE
60		SUM7=SUM7+DELTA(JJ)+COSTHETA
50		IF (DELTA(JJ).LT.M.M) DELTA(JJ)=0.0
40		DELTA(JJ)=YY(3)-THR(I)
30		JJ=J+KK+1
20		SUM6=SUM6+DELTA(J)+COSTHETA
00		IF(DELTA(J).LT.0.0) DELTA(J)=0.0
90		J=I+KK+1 DELTA(J)=YY(2)-THR(I)
80		
		SUMS=SUMS+DELTA(1)+COSTHETA
70		IF(DELTA(I).LT.0.0) DELTA(I)=0.0
60		DELTA(')=YY(1)-THR(I)
50		THR(I)=R-DPRIME(I)
40		COSTHETA=DPRIME(1)/R
30		nprime(I)=SQRT(R++2,-D(I)++2,)
320		DO 130 I=0,KK,1
10		SUM7=0.
99		SUM5=0. SUM6=0.
80	902	FORMAT(F)
70	135	READ(5,902) YY(1)
60	901	FORMAT('+ LOAD = ',F8.3,3X,\$)
50	004	WRITE(6,901) WEIGHT(I)
40		DO 135 I=1.NAXLES
30	•	245, TIRES, ENTER DEFLECTIONS: 1/)
20	908	FORMAT(! FROM FORCE-DEFL CURVES FOR 1/1X,
10	120	WRITE(6,900) VEHOID
00	8	+MASS(3))*386./2.
90		WEIGHT(3)=(((FMASS+(LEN(1)/Q))/(NAXLES-1))
80		WEIGHT(2) WEIGHT(2)/2.
7.0		IF (NAXLES, LT. 3) GO TO 120
160	8	+MASS(2)) *386.
150		WEIGHT(2)=(((FMASS+(LEN(1)/Q))/(NAXLES=1))
140		WEIGHT(1)=(FMASS+(LEN(2)/Q)+MASS(1))+386.
30		D=LEN(1)+LEN(2)
150		KZERO=1
115_		KK=1-1
100		NY=(LEN(1)+LEN(2)+LEN(4))/DELTAL+NSEGS
190	118	NSEGS=1+2-1
186	100	IF((D(I)/R).GT.0.788) GO TO 110
370		D(1)=I+DELTAL
162		00 100 I=0,30,1
150		REAL LENIMASS
040		DIMENSION DELTA(0/90)
130		DIMENSION D(0/30), OPRIME(0/30), THR(0/30)
		DIMENSION VEHWT(2), RF(2), WDF(2), WDR(2,2)

ı

498		SUM5=SUM5+2DELTA(U)
500		SUM6=SUM6+2,-DELTA(KK+1)
510		SUM7=SUM7+2,-DELTA(2+KK+2)
520		SPKF=WEIGHT(1)/SUM5
530		SPKR1=WEIGHT(2)/SUM6
548		SPKR2=0.0
550		IF (N.EQ.1) GO TO 136
560		SPKR1=2+SPKR1
579		SPKR2=2+WEIGHT(3)/SUM7
580	CSSSSS	Of the Section of the
590	136	DO 140 I=KK,0,-1
600.	(1) may 1990	THRESH(KZERO-I)=THR(I)
610	149	THRESH(KZERO+1)=THR(1)
620		00 150 I=1.NSEGS
630		THRESH(I+NSEGS)=THRESH(I)
448		J=1+2+NSEGS
650	150	THRESH(J)=THRESH(I)
660	CSSSSS	, in gon of the second of
670		DO 160 I=KK, 0,-1
ABA		J=KZERO-1
690		JJ=KZERO+1
700		COSTHETA=DPRIME(1)/R
716		GAMMA(J)=SPKF+COSTHETA
728		GAMMA(JJ)=GAMMA(J)
730		J1=J+NSEGS
740		JJ1=JJ+NSEGS
750		GAMMA(J1)=SPKR1+COSTHETA
760		GAMMA(JJ1)=GAMMA(J1)
770		J2*J1+NSEGS
780		JJ2=JJ1+NSEGS
790		GAMMA(J2)=SPKR2+COSTHETA
800	168	GAMMA(JJ2)=GAMMA(J2)
810	CSSSSS	
820		WRITE(21,930) ((1,D(1)),1=0,KK)
830	930	FORMAT(50(' D(',12,') = 'F8,2/)/)
840		WRITE(21,931)
850	931	FORMAT(//' I THRESH(I)'
869		GAMMA(I) 1/6X. FRONT: 1)
878		DO 240 I=1,2+NSEGS
880		WRITE(21,932) L. THRESH(1), GAMMA(1)
890	932	FORMAT (1X, 12, 1X, 2F15, 3)
900	248	IF(1.EQ.NSEGS) WRITE(21.933)
910	933	FORMAT(/6X, 'REAR!')
926		1F(N.EQ.1) GO TO 9999
930	-	WRITE(21,934)
948	934	FORMAT (/6X'REAR21')
950		DO 260 1=2*NSEGS+1,3*NSEGS,1
960	267	WRITE(21,932) LITHRESH(1), GAMMA(1)
978	9999	RETURN

818 828	C 4440A	SUBROUTINE PEAKAC(NPL) THIS SUBROUTINE WRITES THE PEAK
434	C	ACCELERATION VALUES
148	18 3 1 18 1 S	. HRITE(6,901)
858	901	FORMATC' PEAK ACCELERATION VALUES /9X,
565		'MAXIMUM MINUMUM')
878		WRITE(6,982) (ACCMAX(1), ACCMIN(1), [=1,2)
888	902	FORMAT(' C-G '2F9.4./' PITCH ',2F9.4)
898	Charles Inc.	DO 118 I=1, NAXLES
198		J=1+2
110	116	WRITE(6.983) I.ACCMAX(J).ACCMIN(J)
120	983	FORMAT(' AXLE', 11, 1X, 2F9, 4)
130		IF (IFHORE, EQ. 1) WRITE (6, 984) ACCMAX(IDF)
140	.	ACCHIN (IDF)
150	984	FORMAT(' HORIZ ', 2F9.4)
160	Material E	IF(IFDRY, EQ. 'Y') WRITE(6,985) DRVMAX, DRVHIN
178	085	FORMAT(' DRIVER', 2F9.4)
186		IF(IFFILE, EQ. 'N') RETURN
198		WRITE(21,981)
200	y en en en	WRITE(21,902) (ACCMAX(1), ACCMIN(1), 1=1,2)
218		DO 128 I=1, NAXLES
220		Ja1+2
230	128	WRITE(21,983) I, ACCHAX(J), ACCHIN(J)
240	Ga XIII	IF(IFHORE, EQ.1) WRITE(21,904) ACCMAX(IDF),
250	68 co 188	ACCHIN (IDF)
268		IF (IFDRY, EQ. 'Y') WRITE (21,985) DRYMAX, DRYMIN
278		RETURN
288		END

616 626 630			SURROUTINE AVERAGE(X,Y) THIS SUBROUTINE COMPUTES AVERAGE OF ANY INPUT X	THE
840	10	100	DATA N/0/	
050	7	1133	DATA SUM/8./	
060			N=N+1	
978			SUH#SUM+X	
180			Y=SUH/N	
898	1		RETURN	
100			END	

616 620		
820		SUBROUTINE PRINT(FID, IFSTOP, OPTYPE, AP)
	C •••••	THIS SUBROUTINE HANDLES THE TTY PRINTOUT
434		DIMENSION FID (12) . HEAD (5) . VID (3)
840		DIMENSION VOUT (4)
858		DIMENSION DRIVER(4)
666		EQUIVALENCE (DRIVER(1), DISDRV)
878	Mark to the second	DATA VIO/15HABSORRED POHERE/
580		DATA HEAD/'DISPL', 'VELOC', 'ACCEL',
200		IRHSAC' 11 1/
100		DATA IFIRST/0/ IF(OPTYPE.EQ.'Y') GO TO 170
118		
120		IF(IFIRST, EQ. 1) GO TO 110
136	1. A	IF(IFRMS.EQ.'N') K=3
148		HRITE (6.901) VELMPH. VELIPS, DELTAL, DELTAT.
150		NSTEPS, H
168	961	FORMATICALLY VELOCITY FIFS 2. HPH (
188		F6.2, ' IPS) '/, ' DELTA-L=', F5.3, 3X,
198		DELTA-TE', F6.4/' NSTEPSE', 14.4X.
	-	(H=1,F7,6)
200	•	WRITE (6.902) VEHOLO, FID
220	982	FORMAT(' VEHICLE IS: '245/' INPUT PROFILE IS
240	702	: 1/11.1245)
236		WRITE(6.903) (HEAD(1).1=1.K)
249	903	FORMAT(//7X,4(5X,A5))
250	700	IFIRST=1
260	110	IF(IFPWR,EQ,'N') GO TO 120
278		WRITE(6.904) T. PROFIL(1).VID.ARSPWR
286	984	FORMAT(/1 TIME='F6.3,
298		! !NPUT=!F7.3.3Y.3A5.F7.3)
300		GO TO 138
310	128	WRITE(6.904) T.PROFIL(1)
320	136	CALL VARFIX(1, VOUT)
330		WRITE(6.905) (VGUT(1),1=1.K)
346	985	FORMAT(/' C-G ',4F18.5)
350		CALL VARFIX(2. VOUT)
360		WRITE(6,986) (VOUT(1),1=1,K)
376	200	FORMAT(! PITCH !.4F50.5)
386		00 148 L=1.NAXLES
396		N=2+L
400		CALL VARFIX(N, VOUT)
418	140	WRITE(6.907) L. (VOUT(1).181.K)
420	987	FORMAT(' AXLE', [1,1X,4F10,5)
430	77	IF(IFHORZ.EQ.Ø) GO TO 150
440		N=N+1
		CALL VARFIX(N. VOUT)
450		
468		WRITE(6,988),(VOUT(I), I=1,K)

IF(IFDRV.E0.'N') GO TO 168 WRITE(6.989) (DRIVER(I).184.K) FORMAT(' DRIVER',4F18.5) WRITE(6.918) FORMAT(' STOP? ',5)
FORMAT(' DRIVER',4F10.5) NRITE(6.910)
ACCEPT 996. IFSTOP
FORMAT(A1) KK=0
RETURN IF(IFIRST.EQ.0) WRITE(6.911)
FORMAT(//! TIME ABSPUR AVEPUR!) IFIRST=1
WRITE(6,912) T,ABSPWR,AVEPWR FORMAT(1X,F5,2,2F7,2)
KK=KK+1 IF(KK.GE.18) GO TO 160 END
1

818 626 838	*****	SUBROUTINE VARFIX(I, VOUT) THIS SUBROUTINE IS CALLED BY PRINT TO SELECT THE VARIABLES TO BE PRINTED.
848		DIMENSION VOUT(4) VOUT(1)=VAR(1)
868 878		N=1+IDF VOUT(2)=VAR(N)
888		VOUT(3)=ACCGS(I) VOUT(4)=RMS(I)
106		RETURN .

F10		SUBROUTINE POWER(FK)
928	C	THIS SUBROUTINE CALCULATES ABSORBED POWER.
938		DIMENSION FK(9)
848	· 13 195	U2=+67,743+ACCDRV-1.842+PWRVAR(8)
650	de my 1 d my 1 2 m	U1=-U2-3,246+PWRVAR(6)
868		UB==U1+1,318*PWRVAR(4)
079		FK(1)=H+(.00873+PWRVAR(2)+PWRVAR(3))
880		FK(2)=H+(-4,99484+ACCDRV)
898		FK(3)=H+(-100,+U0-59.+PHRVAR(3))
100		FK(4)=H+(-13.+U1+71,6+PWRYAR(5)
110		-53,49*PWRVAR(4))
120		FK(5)=H+(-100.+U1-47.78+U0)
138	and a second	FK(6)=H+(-10.+U2-78.59+PWRVAR(7)
140	h 200 m	-55.28-PHRVAR(6))
150		FK(7)=H+(-10.+U2-6.259+U1)
160	943 K	FK(8)=H+(-677,43+ACCDRV-388,8+PHRVAR(9)
170	The second	-46',67*PHRVAR(B))
180		FK(9)=H+(-67.743+ACCDRV-2.742+U2)
190		RETURN
200	port i	END

190	SURROUTINE SHIFT
200 C ***** 210 C ****	THIS SUBROUTINE ADVANCES THE PROCES
220	DO 100 I=NY,2,-1 PASTP(I-1)=PROFIL(I-1)
248 100	PROFIL(I)=PROFIL(I-1) RETURN
260	END

0

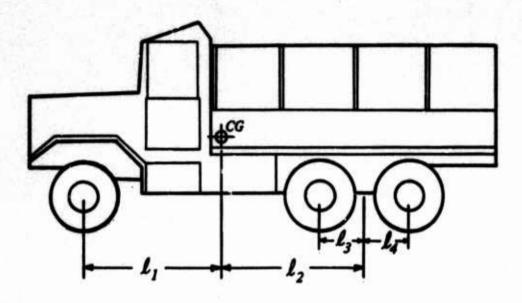
U O

818		SUBROUTINE FILHRT (FID, NPL, FN2, AP)
858	C ****	THIS SUBROUTINE HANDLES THE OUTPUT
630	C *****	TO AN EXTERNAL FILE
840		DIMENSION HEAD1(6). HEAD2(2)
858		DIMENSION VOUT (10) .FID (12)
060		DATA IFIRST/0/
670	and the same and	DATA HEADI/'AXLE1', 'AXLE2', 'AXLE3', 'AXLE4',
080	•	'AXLES','AXLE6'/
990		DATA HEAD2/'H, C-G', 'V, DRY'/
100		IF (IFIRST, NE. Ø) GO TO 130
110	NAME OF TAXABLE PARTY.	WRITE(21,902) VELMPH, VELIPS, DELTAL, DELTAT.
120		NSTEPS, H
130	982	FORMAT(/, VELOCITY = 1,F6.2,
140	•	' MPH ('F6.2,' IPS) ',7X,'DELTA-L='
150	•	.F5.3.' INCHES,'.9X,'DELTA-Is'.F10.8.
160	X - A **	' SECONDS' . // RUNGE-KUTTA-GILL INTEGRATION
170	4	NUMBER OF STEPS=', 14,10X, 'STEP SIZE (H)=',
180	•	E12,6//)
198	983	WRITE(21,903) VEHOID, FID FORMAT(//! VEHICLE IS: ',245,//
200	703	
210	A STATE OF THE STA	PROFILE IS: 1,12A5)
220		IFIRST=1
230	Set Office Control	IF(IFDRV, NE, 'N') GO TO 120
250		HEAD2(2)=0,
266		KK=KK-1
270	128	IF (IFHORZ.NE.0.) GO TO 160
286	4	HEAD2(1) *HEAD2(2)
290		KK=KK-1
300		GO TO 169
310	130	IF(NPL.LT.50) GO TO 170
320	140	IF(NPL.GE.54) GO TO 150
330	4.0	WRITE(21,904)
340	904	FORMAT(1H)
350		NPL#NPL+1
360		GO TO 140
370	150	NPL=6
380	160	WRITE(21,905) (HEAD1(I), I=1, NAXLES),
390	•	(HEAD2(1), I=1,KK)
400	905	FORMAT(1H1, TIME Y(1)',14X,
410	•	'V,C-G PITCH',4X,8(A5,4X))
420		WRITE(21,904)
430		NPL=NPL+2
448	170	DO 180 [=1, IDF
450	189	VOUT([)=VAR([)
460		J=10F
478		IF (IFDRV.EQ.'N') GO TO 198
480		J*J+1
498		VOUT (J) = DISDRV

500	190	WRITE(21,986) T.PROFIL(1),(VOUT(1),1=1,J)
510	986	FORMAT(/1X,F7,4,F6,2," DISPL 1,10F9,4)
520		00 200 1=1,10F
538	4.3	K#1+1DF
540	202	VOUT(I)=VAR(K)
550		IF (IFDRY, EQ. 'N') GO TO 210
560		VOUT(J)=VELDRY
570	215	WRITE(21,987) AP, (VOUT(1), 1=1, 1)
580	907	FORMAT(' AVEPHR=', F6.2, ' VELOCITY', 10F9.4)
598		DO 220 I=1.IDF
600	228	VOUT(1)=ACCGS(1)
610		IF (IFDRY.EQ.'N') GO TO 230
628		VOUT(J) *ACCORY
630	230	IF (IFPWR.NE.'N') GO TO 240
848		WRITE(21,908) (VOUT(I), [81,1)
650	908	FORMAT(18X, 'ACCELERATION', 2X, 18F9, 4)
668		GO TO 250
670	249	WRITE(21,909) ABSPWR, (VOUT(I), [=1, J)
ARG	989	FORMAT(POWER= 1. F6.2. ACCEL 1.10F9.4)
690	258	NPL=NPL+4
700	MENTS S	IF (IFRMS.EQ.'N') RETURN
710		00 260 I=1, IDF
720	260	VOUT(I)=RMS(I)
730	No.	IF (IFDRY.EQ.'N') GO TO 270
740		VOUT(J) #RMSDRV
750	270	WRITE(21,910) (VOUT(I), I=1, J)
768	910	FORMAT, 16X, 'RMS ACC ', 10F9.4
770	7	NPL=NPL+1
780	200	RETURN
798	996	FORMAT(A5)
800	17 T	END

010 020	C	SUBROUTINE WHEELS (FK, NYTEMP) THIS SUBROUTINE IS THE GENERALIZED
939	C ****	
048		DIMENSION TEMP(3), FK(18), NYTEMP(3)
050		REAL LEN, MASS, INRTIA
868		DATA IFIRST/0/
070	C	RESULTING AXLE FORCES
980	99	DO 110 I=1, NAXLES
999		FORCW(1)=0.
100		DO 100 J=1.NSEGS
110		JU=J+NYTEMP(I)
120		JJJ=J+(I-1)*NSEGS
130		TEMP@=Y(JJ)-VAR(2+I)-THRESH(JJJ)
140		IF (TEMPO.LT.0.) TEMPO=0.0
150	100	FORCW(1)=FORCW(1)+GAMMA(JJJ)+TEMPØ
160	113	CONTINUE
179	C *****	
180		UU=LEN(3)+LEN(4)
198		IF (UU.LE.0.) GO TO 120
200		U=(VAR(4)-VAR(5))/UU
210		BETA=ATAN(U)
220		DBETA=(VAR(4+IDF)-VAR(5+IDF))/(UU+(1.+U+U))
230		TEMP?=SIN(BETA)
248		TEMP4=COS(BETA)
250	120	TEMP1=SIN(VAR(2))
269	4	TEMP3=COS(VAR(2))
270	C ****	SUSPENSION SPRING DEFLECTION (SPDEF)
280		SPDEF(1)=VAR(3)-VAR(1)-LEN(1)+TEMP1
298	8	SPDEF(2)=VAR(4)-VAR(1)+LEN(2)+TEMP1 -LEN(3)+TEMP2
300	•	IF (NAXLES.LT.3) GO TO 130
320		SPDEF(3)=VAR(5)-VAR(1)+LEN(2)+TEMP1
330	8	+LEN(4)+TEMP2
340		SUSPENSION SPRING RATE OF DEFLECTION (DSPDF
350	130	DSPDF(1)=VAR(3+IDF)-VAR(1+IDF)
368	3-1	-LEN(1)+VAR(2+IDF)+TEMP3
370	ā	DSPDF(2)=VAR(4+IDF)-VAR(1+IDF)
380	8	+LEN(2) *VAR(2+IDF) *TEMP3-LEN(3) *DBETA*TEMP4
390	-	IF (NAXLES, LT.3) GO TO 140
400		DSPDF(3)=VAR(5+IDF)-VAR(1+IDF)
410		+LEN(2) +VAR(2+IDF) +TEMP3+LEN(4) +DBETA+TEMP4
420	C ****	SUSPENSION SPRING FORCES
430	148	00 160 I=1, NAXLES
448	3000	K=5
450		DO 150 M=1,4
460		IF(SPDEF(I).LT.SLIMIT(M,I)) GO TO 155
476	150	CONTINUE
480		GO TO 160

96	155	K#M
80	160	FORCK(1)=SSLOPE(K,1)+SPDEF(1)+SINT(K,1)
18	C	SUSPENSION DAMPING FORCES
20		DO 188 1=1, NAXLES
30		K=3
40		DO 170 M=1.2
50	-	IF (DSPOF(1), LT, DLIMIT(M, I)) GO TO 175
60	179	CONTINUE
70		GO TO 180
80	175	K*M
99	188	DAMP(1) *DSLOPE(K, 1) *DSPDF(1) *DINT(K, 1)
00	C	DIFFERENTIAL EQUATIONS
10	C ****	FK(1) AND FK(1+IDF)CG MOTION
27	C ****	FK(2) AND FK(2+IDF)PITCH MOTION
30	C ****	FK(3) AND FK(3+1DF)AXLE1 HOTION
40	C ****	
50	C ••••	FK(N) AND FK(N+IDF)AXLEN HOTION
50		DO 198 1:1.IDF
70	190	FK(I)=H+VAR(I+IDF)
30	<u> </u>	STEMP=0.
0		DO 270 I=1.NAXLES
10		TEMP(1) = FORCK(1) + DAMP(1)
.0		STEMP=STEMP+TEMP(I)
0	200	FK(1+2+1DF)=H+(FORCH(1)-TEMP(1)
50	4	-MASS(1)+386.)/MASS(1)
9		FK(1+IDF)=H+(STEHP-FMASS+386.)/FMASS
50		FK(2+IDF)=H+(LEN(1)+TEMP(1)
10		-LEN(2) OTEMP(2))/INRTIA
0		RETURN
0		END .
9	·	
Ø	CSSSSS	if .
0		······································
10		
0		
50		SUBROUTINE M113(FK)
70	C	THIS SUBROUTINE IS FOR A TRACKED
30	C	VEHICLE NOT USED HERE
0		END
0	C	
Ø	C	
0	č	
0	Č	
10	č	
50		SURROUTINE MOD(FK)
50	C	THIS SUBROUTINE IS FOR A TRACKED
		VEHICLE, NOT USED HERE
	C	VERILLE NUI VALU MERE


APPENDIX C:

0

The vehicle parameters necessary for wheeled vehicle simulation are listed in the same order as in subroutine data. The variable names are written in all capital letters. See Figures C1 through C3 for clarification. Those parameters in DATA, not listed herein, are not necessary for wheeled vehicle simulation. This appendix is intended as a work sheet for use in obtaining data for simulation of a new vehicle.

A. DSETUP

	1.	NY - number of profile points under vehicle (computed)
	2.	IDF - degrees of freedom
		= 4 for 2-axle vehicles
		= 5 for 3-axle vehicles
	3.	NAXLES - number of exles
	4.	NSEGS - number of segments in tire model (computed)
	5.	IFHORZ
B.	DLE	N
	1.	LEN(1) - 1: horizontal distance from front axle to center of gravity inches
	2.	LEN(2) - 12: horizontal distance from CG to rear axle (or center of rear bogie assembly) inches
	3.	LEN(3) - 12: horizontal distance from center of rear bogie assembly to center of 2nd axle (= 0 for 2 axles) inches

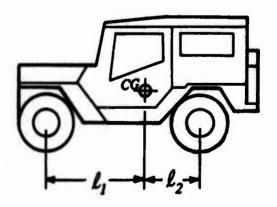
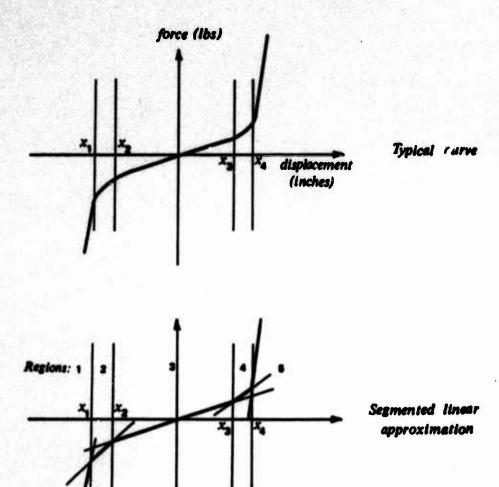
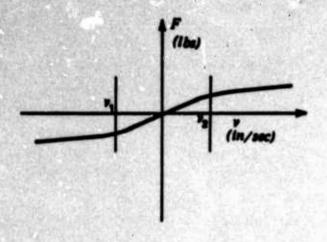



Figure C1. Geometrical Vehicle Parameters

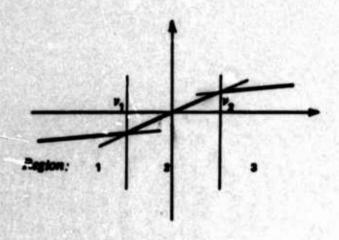
	4. LEN(4) - 1: horizontal distance from center of rear bogie to center of 3rd axle (= 0 for 2-axles) Inches
	5. LEN(5) thru LEN(9)
c.	DMASS - Unsprung masses
	1. MASS(1) - M: Mass of front exle in- cluding wheels Ib-sec ² inches
	2. MASS(2) - M ₂ : Mass of second axle
	3. MASS(3) - M ₃ : Mass of third exis
	4. MASS(4) - MASS(6)
D.	DFMASS-M _o : Sprung mass
E.	DINRTA-1: Pitch moment of inertia of spring mass about CG
F.	DESCRIPTION OF SUSPENSION SPRING FORCE FUNCTION (see Figure C2)
	1. DSLIM - limits of regions
	a. Front axle:
	(1) SLIMIT(1,1) - x ₁₁ inches
	(2) SLIMIT(2,1) - x ₂₁ inches
	(3) SLIMIT(3,1) - × ₃₁ · · · · · · Inches
	(4) SLIMIT(4,1) - ×41 Inches
	b. Second axle:
	(1) SLIMIT(1,2) - x ₁₂ inches
	(2) SLIMIT(2,2) - x ₂₂ inches

B

Equations of lines are:


Figure C2. Segmented-Linear Spring Force Approximation

		(3)	SLII	HIT(3	,2)	•	×32	•	•	·	•	•	•	•		•	•	
		(4)	SLII	HIT(3	,2)	•	×42	•	•	•	•	•		•	•	•	•	
	c.	Thi	rd a	kie (if 2	}-4	xles	,	ti	101		•1	re	Ze	orc	101	1)	
		(1)	SLII	HIT(I	,3)		×13	•	•	•	•	•	•	•	•	•	•	
		(2)	SLII	4IT(2	,3)	-	×23	•	•	•	•	•	•	•	•	•	•	
		(3)	SLII	HIT(3	,3)	•	×33	•	•	•	•	•	•	•	•	•	•	
		(4)	SLII	HIT(4	,3)	•	×43	•	•	•	•	•	•	•	•	•	•	
2.	DSS	LO -	Slo	pe of	Hr	101	whi	ici	h 4	ppp	ore	×	704	te	•	:hv	1	force
				ion c														
	٥.	Fro	nt a	xle:														
		(1)	SSL	DPE(1	,1)	-	m ₁₁	•	•	•	•	•	•	•	•	•	•	
		(2)	SSL	DPE(2	,1)	•	m ₂₁	•	•	•	•	•	•	•	•	•	•	
		(3)	SSL	DPE(3	,1)	•	^m 31	•	•	•	•	•	•	•	•	•	•	
		(4)	SSL	DPE(4	,1)	-	m ₄₁	•	•	•	٠	•	٠	•	•	•	•	
		(5)	SSL	OPE(5	,1)	•	^m 51	•	•	•	•	•	•	•	•	•	•	
	b.	Sec	ond (exle:														
		(1)	SSL	OPE(1	,2)	-	^m 12	•	•	•	•	•	•	•	•	•	•	
		(2)	SSL	OPE(2	,2)	•	m 22	•	•	•	•	•	•	•	•	•	•	
		(3)	SSL	OPE(3	,2)	•	m32:	•	•	•	•	•	•	•	•	•	•	
		(4)	SSL	OPE(4	,2)	•	m42	•	•	•	•	•	•	•	•	•	•	
		(5)	SSL	OPE(5	,2)	-	m ₂₅ 2	•	•	•	•	•	•	•	•	•	•	
	c.	Thi	rd a	xle:														
		(1)	SSL	OPE(1	,3)	•	^m 13	•	•	•	•	•	•	•	•	•	•	
		(5)	SSL	OPE(2	,3)	•	^m 23	•	•	•	•	•	•	•	•	•	•	_
		(3)	SSL	OPE(3	3,3)	•	m ₂₃		•	•	•	•	•	•	•	•	•	


					Tall State St.												
	(4)	SSLOP	E(4,	3)	- ŋ	43	•	•	•	•	•	•	•	•	•	•	
DS 11			10000			533											
١.	Fro	nt axi	le:														
	(1)	SINT(1,1)	-	c ₁₁		•			•		•	•	•		•	
.																	
	(1)	SINT(1,2)	-	c 12	•		•			•	•	•			•	
	(4)	SINT(4,2)	-	942	•			•	•	•	•			•		
: .																	
	(1)	SINT(1,3)	_	c ₁₃		•		•	•	•	•	•		•		I so
					_												
					477												
	•	(5) DSINT - (1) (2) (3) (4) (5) Sec (1) (2) (3) (4) (5) Th1 (1) (2) (3) (4)	(5) SSLOP (5) SSLOP (5) SINT (1) SINT (2) SINT (3) SINT (4) SINT (5) SINT (2) SINT (2) SINT (3) SINT (4) SINT (4) SINT (5) SINT (5) SINT (6) SINT (7) SINT (8) SINT (9) SINT (1) SINT (1) SINT (1) SINT (2) SINT (3) SINT (4) SINT (4) SINT (5) SINT (6) SINT (7) SINT (8) SINT (9) SINT (1) SINT (1) SINT (1) SINT (2) SINT (3) SINT (4) SINT (4) SINT (5) SINT	(5) SSLOPE(5, 2) SINT - Intercepts (1) SINT(1,1) (2) SINT(2,1) (3) SINT(3,1) (4) SINT(4,1) (5) SINT(5,1) (6) SINT(5,1) (7) SECOND EXTER (1) SINT(1,2) (2) SINT(2,2) (3) SINT(3,2) (4) SINT(4,2) (5) SINT(4,2) (5) SINT(2,3) (6) SINT(2,3) (1) SINT(2,3) (2) SINT(2,3) (3) SINT(3,3) (4) SINT(4,3)	(5) SSLOPE(5,3) DSINT - Intercepts (1) SINT(1,1) - (2) SINT(2,1) - (3) SINT(3,1) - (4) SINT(4,1) - (5) SINT(5,1) - (6) SINT(5,1) - (1) SINT(1,2) - (2) SINT(2,2) - (3) SINT(3,2) - (4) SINT(4,2) - (5) SINT(2,2) - (1) SINT(4,2) - (2) SINT(2,3) - (3) SINT(1,3) - (4) SINT(1,3) - (5) SINT(2,3) - (6) SINT(3,3) - (7) SINT(4,3) - (8) SINT(4,3) - (9) SINT(4,3) - (1) SINT(4,3) -	(5) SSLOPE(5,3) - m (5) SSLOPE(5,3) - m (5) SINT - Intercepts of form (1) SINT(1,1) - c (1) (2) SINT(2,1) - c (2) (3) SINT(3,1) - c (3) (4) SINT(4,1) - c (4) (5) SINT(5,1) - c (5) (1) SINT(5,1) - c (2) (3) SINT(1,2) - c (2) (3) SINT(2,2) - c (2) (4) SINT(2,2) - c (5) (5) SINT(2,2) - c (6) (6) SINT(1,3) - c (7) (7) SINT(1,3) - c (8) (8) SINT(1,3) - c (9) (9) SINT(1,3) - c (1) (1) SINT(1,3) - c (3) (3) SINT(1,3) - c (3) (4) SINT(1,3) - c (4) (5) SINT(1,3) - c (6) (6) SINT(1,3) - c (7) (7) SINT(1,3) - c (8) (8) SINT(1,3) - c (9) (9) SINT(1,3) - c (9) (1) SINT(1,3) - c (1) SINT(1,3) - c (3) (4) SINT(1,3) - c (4) (5) SINT(1,3) - c (6) (7) SINT(1,3) - c (7) SINT(1,3) - c (8) (8) SINT(1,3) - c (9) SINT(1,3) -	(5) SSLOPE(5,3) - m ₅₃ DSINT - Intercepts of form Front axle: (1) SINT(1,1) - c ₁₁ . (2) SINT(2,1) - c ₂₁ . (3) SINT(3,1) - c ₃₁ . (4) SINT(4,1) - c ₄₁ . (5) SINT(5,1) - c ₅₁ . Second axle: (1) SINT(1,2) - c ₁₂ . (2) SINT(2,2) - c ₂₂ . (3) SINT(3,2) - c ₃₂ . (4) SINT(4,2) - c ₄₂ . (5) SINT(4,2) - c ₄₂ . (5) SINT(1,3) - c ₁₃ . (1) SINT(1,3) - c ₁₃ . (2) SINT(2,3) - c ₂₃ . (3) SINT(3,3) - c ₃₃ . (4) SINT(4,3) - c ₄₃ .	(5) SSLOPE(5,3) - m ₅₃ · cosint - intercepts of force 1. Front axie: (1) SINT(1,1) - c ₁₁ · · · (2) SINT(2,1) - c ₂₁ · · · (3) SINT(3,1) - c ₃₁ · · · (4) SINT(4,1) - c ₄₁ · · · (5) SINT(5,1) - c ₅₁ · · · (6) SECOND axie: (1) SINT(1,2) - c ₁₂ · · · (2) SINT(2,2) - c ₂₂ · · · (3) SINT(3,2) - c ₃₂ · · · (4) SINT(4,2) - c ₄₂ · · · (5) SINT(2,2) - c ₅₂ · · · (1) SINT(1,3) - c ₁₃ · · · (2) SINT(2,3) - c ₂₃ · · · (3) SINT(3,3) - c ₃₃ · · · (4) SINT(4,3) - c ₄₃ · · ·	(5) SSLOPE(5,3) - m ₅₃	(5) SSLOPE(5,3) - m ₅₃ · · · · · · · · · · · · · · · · · · ·	(5) SSLOPE(5,3) - m ₅₃	(1) SINT(1,1) - c_{11} (2) SINT(2,1) - c_{21} (3) SINT(3,1) - c_{31} (4) SINT(4,1) - c_{41} (5) SINT(5,1) - c_{51} 3. Second axle: (1) SINT(1,2) - c_{12} (2) SINT(2,2) - c_{22} (3) SINT(3,2) - c_{32} (4) SINT(4,2) - c_{42} (5) SINT(4,2) - c_{42}					

G. DESCRIPTION OF SUSPENSION DAMPING FORCE FUNCTION (see Figure C3)

1. DDLIM - Limits of regions.

Typical curve

Segmented linear approximation

Equations of lines are:

Figure C3. Segmented-Linear Damping Force Approximation:

U

	Front exie:	
	(1) DLIMIT(1,1) - v11 In/	100
	(2) DLIMIT(2,1) - v21	
	Second exie:	
	(1) DLIMIT(1,2) - v ₁₂ In/s	Sec
	(2) DLIHIT(2,2) - v22 In/s	lec
	Third exie:	8
	(1) DLIMIT(1,3) - v ₁₃	ec
	(2) DLIMIT(2,3) - v23 In/s	.
2. [0 - Slope of lines which approximate the	
	e-velocity curve.	
	Front exie:	
	(1) DSLOPE(1,1) - n ₁₁	
	(2) DSLOPE(2,1) - n ₂₁	
	(3) DSLOPE(3,1) - n ₃₁	
b	Second exte:	
	(1) DSLOPE(1,2) - n ₁₂	
	(2) DSLOPE(2,2) - n ₂₂	
	(3) DSLOPE(3,2) - n ₃₂	
. с	Third exte:)
	(1) DSLOPE(1,3) - n ₁₃ · · · · · · · ·	
	2) DSLOPE(2,3) - n ₂₃ · · · · · · · · ·	
y.	(3) DSLOPE(3,3) - n ₃₃ · · · · · · · · ·	
ACO.	경기 (10 PM) 에너 전기 14 PM (10 PM)	

VS.	deflection velocity curves.	
	Front exle:	
	(1) DINT(1,1) - d ₁₁	
	(2) DINT(2,1) - d ₂₁	
	(3) DINT(3.1) - d ₃₁	
ь.	Second exle:	
	(1) DINT(1,2) - d ₁₂	
	(5) DINL(5'5) - q ⁵⁵ · · · · · · · · · · · · · · · · · ·	
	(3) DINT(3,2) - d ₃₂	
c.	Third exie:	
	(1) DINT(1,3) - d ₁₃	
	(2) DINT(2,3) - d ₂₃	
	(3) DINT(3,3) - d ₃₃	

APPENDIX D (Documentation of PWRPLT)

- 1. DESCRIPTION: This program lots the absorbed power and the average absorbed power against time. It stores the plot in a file on disc which can be printed on a line-printer with 130 characters per line.
- 11. INPUTS AND OPERATING INSTRUCTIONS:
 - A. Prior to execution: none
 - B. During execution:
 - 1. IFILE: The name of the file which contains the power and absorbed power. This file <u>must</u> be in the format of the detailed output file from VEH, with options absorbed power and RMS accelerations specified. This file name must be 5 or less characters long.
 - 2. OFILE: Desired name of plot file; not over 5 characters.
- III. OUTPUTS: One file containing a plot of absorbed power and average power vs. time.

IV. SAMPLE EXECUTION:

.EX PWRPLT FORTRAN: PWRPLT LOADING

LOADER AK CORE

IFILE: FILEX

OFILE: PWRX
END OF FILE ON DSKI
(//F,/8X,F,/7X,F)
LAST FORTRAN I-O AT USER LOC 000267

EXECUTION TIME: 8.20 SEC. TOTAL ELAPSED TIME: 45.20 SEC. NO EXECUTION ERRORS DETECTED

EXIT

0

0

1

0

1

8

Reproduced from best available copy.

O

V. PROGRAM LISTING:

1

		DIMENSION X(120),T(10)
010		DIMENSION P(10), AP(10)
030		DATA X/120*' '/
849		STARETOI
050		PLUS#1+1
868		BLANK#! !
970		WRITE(6,900)
989	900	FORMAT(' IFILE: ',S)
090		ACCEPT 995, FN1
100	995	FORMAT(A5)
110		CALL IFILE (21.FN1)
120		WRITE(6,905)
130	905	FORMATCI OFILES (.S)
140		ACCEPT 995, FN2
150		CALL OFILE(22.FN2)
160	C	
178		WRITE(22,940) FN1
180	940	FORMAT(' GRAPH OF TIME VS ABSORBED'
190	•	POWER FOR '.A5.'.DAT!//)
200		WRITE(22,945) (1,1=0,22)
210	945	FORMAT(141, 171ME 1, 11, 22(3Y, 12),
220	•	POWER AVE'/)
230	105	00 110 J=1,300
248		READ(21,995) TEST
250		1F(E0FC) G0 T0 9999
269	117	IF (TEST.E4.'1 TI') GO TO 120
270		GO TO 9999
280	128	00 130 l=1.10
290		READ(21,920) T(1),AP(1),P(1)
300		IF (EOFC) GO TO 135
310	132	CONTINUE
320	920	FORMAT(//F./8X.F./7X.F)
330		JJ810
340		GO TO 136
350	135	7181
360	136	DO 140 I=1,JJ
370		IX#(5, +AP(1)+,5)+1
380		IF(IX,LE,0) IX=1
392		IF(IX.GT.110) IX=110
400		X(1X)=STAR
416		

420		1XX=(5.*P(1)+,5)+1 1F(1XX.LE.0) 1XX=1	
448		IF([XX.GT,118) [XX=118 X([XX)=PLUS	
46F		WRITE(22,938) T(1),(X(J),J=1,	118),
480	938	FORMAT(101,F5,2,118A1,2F6,2)	
580	146	X(IXX)=BLANK	
920	9999	WRITE(22,945) (1,1=0,22)	
1548		ENO	